大数据助推通信业“华丽转身”
横空出世的大数据所释放出的巨大“能量”,如今已经波及大部分传统行业。其中,作为与大数据有天然紧密联系的通信业更是首当其冲。 运营管道中的数据是通信运营商多年来业务的积累,其间蕴藏着丰富的业务信息和商业信息。如何挖掘出这些数据的巨大价值而在大数据时代傲视群雄,成为运营商当前所面临的头等大事。 改变通信业现状 早在2012年,idc就发布研究报告指出:全球大数据市场规模将从2010年的32亿美元增长至2015年的169亿美元,年均增长率高达40%以上。 当前,通信行业已成为大数据最有作为的细分行业之一。
随着网业分离的加速实施和ott(互联网向用户提供各种应有服务)业务的不断渗透,目前通信运营商正逐步沦为“流量管道”。在互联网企业逐步成为电信业务主要提供者的趋势下,运营商的传统业务受到前所未有的冲击,用户的arpu值(每用户平均收入)也在同步降低。 在此背景下,通信业与大数据结合所带来最直接的改变,是推动了运营商与维护部门职能角色转换。 赛迪顾问通信产业研究中心分析师杨光接受《中国科学报》记者采访时表示,在大数据时代,网络侧的数据将成为有价值的蓝海,通信运营与维护部门可对海量的网络侧数据进行分析,以支撑市场部门营销活动,从被动响应客户的需求走向主动为其运营、维护,就此实现了职能的转型。 电信分析人士马继华也对《中国科学报》记者指出:“大数据与通信业结合可以提高运营商的管理水平,实现网络的优化。” 此外,运营商可以利用大数据分析寻找目标客户,制定有针对性的营销计划和产品组合,为不同用户群体提供差异化服务,实现精准营销。
在分析人士看来,传统的运营商业务决策由bss(业务支撑系统)数据决定,大数据出现后,运营商加强了bss数据和oss(运营支撑系统)数据的整合,甚至可以通过多维度的数据挖掘直达每一个用户、每一桩业务的细颗粒度分析,对用户进行精准画像。 “简言之,运用大数据能显著提高通信业对存量用户的管理能力。”杨光说。 同时,随着大数据时代的来临,运营商的成本支出也将出现下降。 盈利模式被颠覆 更为重要的是,大数据的出现将颠覆通信运营商的盈利模式和格局。 在过去,传统运营商的商业模式往往只提供管道而不关心内容。但是,在大数据出现之后,运营商管道内庞大且丰富的网络侧数据,可以为运营商提供深层次的经营决策支撑。
“运营商掌握大量别的行业所没有的数据,比如用户的通话轨迹等等,具有先天的优势,不仅数据量大,而且可靠性高。”马继华说。 长期以来,各个行业用户往往只专注某一领域,缺少宏观数据的视角。而通信业运营商可以利用自身数据与网络资源方面的优势,为这些行业用户提供定制化分析报告。 马继华说:“运营商可以运用大数据在不同行业中发现好的商业机会。以往他们只是将数据用于管理和决策的需要,并没有做成产品,而现在运营商完全可以将其做成数据分析产品出售给不同的行业用户。” 杨光也表示,未来新的通信业盈利模式之一即是面向行业用户提供增值服务。
“比如面向行业用户提供定制化报表,对流量、用户访问记录等个性化信息进行多维度分析,为行业用户提供端到端的业务质量管理。” 同时,运营商可以推出面向个人用户的短订购模式。比如以大数据分析为基础,将用户群细分,依托精细化营销平台面向每个自然用户推出多元化流量包套餐,支持不同场景下用户使用习惯。 在流量不充足时,用户可根据个人情况随时订购流量套餐,保证数据业务持续使用——目前,国内运营商已经正在积极推进这一新业务。
此外,通信运营商还能与ott企业或虚拟运营商进行合作共享数据,杨光指出,运营商可以采用收入分成的方式,与ott企业或虚拟运营商达成合作意向,通过技术改进保证特定ott业务使用者的业务质量,利用定向提速、定制套餐等手段提升用户感知,增加用户使用ott业务黏度,提高用户arpu值。 并非一路坦途 当然,进入大数据时代的通信业并非一路畅通无阻,仍然有许多因素在阻碍其“华丽转身”。 马继华告诉记者,运营商虽然掌握大量数据,但是对个人用户具体资料掌握得并不清楚。而且由于多年来数据无法给运营商带来商机,因此他们对于数据的保存并不重视。 “很多数据在系统维护时就被抹掉或者替换了,这对分析用户使用习惯的连续性有很大的影响,很多数据因此失去分析的意义。”马继华说。
而且,当前大数据的数据量级正在突破现有的物理设备上限,导致运营商需要不断增加存储平台以应对数据增长态势。 “基础设备的建设速度远远跟不上数据增长速度,烟囱式的系统架构投资过大且无法一次成型。”杨光说。 他建议,运营商可以建立自己的云网络,使用云存储手段实现数据的分布式存储,根据需求逐步扩充存储平台空间,形成数据存储的弹性架构。 此外,数据共享问题也应当引起运营商的重视。大数据应用的前提自然是数据开放,运营商如何在保证安全与隐私的前提下,最大限度地为用户提供数据共享的便利,成为在大数据实施规模应用前亟待解决的问题。
“可以培育数据管理人才,组建专职人才队伍负责数据开放共享,制定数据共享操作规则和相应规章制度,以强化隐私安全保护的重要性。”
数据分析咨询请扫描二维码
在当今以数据为导向的商业环境中,数据分析师的角色变得越来越重要。无论是揭示消费者行为的趋势,还是优化企业运营的效率,数据 ...
2024-11-17在当今以数据为导向的商业环境中,数据分析师的角色变得越来越重要。无论是揭示消费者行为的趋势,还是优化企业运营的效率,数据 ...
2024-11-17金融数学是一门充满挑战和机遇的专业,它将数学、统计学和金融学的知识有机结合,旨在培养能够运用数学和统计方法解决复杂金融市 ...
2024-11-16在信息时代的浪潮中,大数据已成为推动创新的重要力量。无论是在商业、医疗、金融,还是在日常生活中,大数据扮演的角色都愈发举 ...
2024-11-16随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15在快速演变的数字时代,数据分析已成为多个行业的核心驱动力。无论你是刚刚踏入数据分析领域,还是寻求进一步发展的专业人士,理 ...
2024-11-15Python作为一种通用编程语言,以其简单易学、功能强大等特点,成为众多领域的核心技术驱动者。无论是初学者还是有经验的编程人员 ...
2024-11-15在当今数据驱动的世界中,数据分析已成为许多行业的基础。无论是商业决策,产品开发,还是市场策略优化,数据分析都扮演着至关重 ...
2024-11-15数据分析作为现代商业和研究领域不可或缺的一部分,吸引了越来越多的初学者。然而,自学数据分析的过程中,初学者常常会遇到许多 ...
2024-11-15在当今的数据驱动世界中,机器学习方法在数据挖掘与分析中扮演着核心角色。这些方法通过从数据中学习模式和规律来构建模型,实现 ...
2024-11-15随着数据在各个行业的重要性日益增加,数据分析师在商业和技术领域的角色变得至关重要。其核心职责之一便是通过数据可视化,将复 ...
2024-11-15数据分析师的职责不仅仅局限于解析数据和得出结论,更在于将这些复杂的信息转换为清晰、易懂且具有影响力的沟通。良好的沟通能力 ...
2024-11-15数字化转型是企业提升竞争力和实现可持续发展的关键路径。面对快速变化的市场环境,以及技术的飞速发展,企业在数字化转型过程中 ...
2024-11-15CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14