大数据时代 命令行技术过时了吗?
随着《关于促进大数据发展的行动纲要》(简称“《纲要》”)日前正式下发,《纲要》提出,大数据成为推动经济转型发展的新动力。大数据产业正在成为新的经济增长点,将对未来信息产业格局产生重要影响。伴着这股潮流,出现了N多新技术如Hadoop、Spark、Hive等等,与这些时髦的技术相比,命令行好像应该被放进博物馆被人参观的古董。命令行的历史可以追溯到几十年前,而大数据的崛起才短短几年,命令行技术在数据科学这样新的应用领域是否还发挥作用,彰显其独有的魅力呢?
前几日,小编注意到ChinaUnix论坛中有一贴子《大数据崛起时代,命令行技术的价值在哪里?》网友们讨论的很是热闹,网友fengzhanhai说道“命令行给系统管理员及开发人员带来的灵活性和快感不是图形界面所能够替代的”。于是小编也投身参与,让我们一起来讨论。
命令行技术的优缺点
使用命令行是很有趣的,记住各种命令,学会脚本的编写,用命令行是非常高效的。即使是使用Windows Server,我们也可以使用PowerShell,继续享受命令行的乐趣。对于初学者来说,命令行需要学习并记住很多命令及用法,显得颇有难度。
网友seasea2517说“不用鼠标操作减少鼠标手烦恼,灵活、容易实现自动化批量化、系统要求低、不同平台的同样命令行工具下的操作相同。不足就是不够直观,上手比GUI慢一些。”
“从最初的dos命令行,truboC的命令行编译及执行,到unix和linux时代命令行的普遍应用。他是一个系统工程师的普遍技能。但命令行是结构化编程变成的产物,在面向对象编程的今天,追求对象的引用、类的实例化、RPC的时候,命令行就其不能应对复杂的调用关系和形象的编程。尤其对于UE用户体验要求较高的场合,命令行基本用不上。”网友hiyachen说道。
网友yinyuemi非常喜欢命令行,他说“我的学习之路,有80%的代码都是在命令行学习和运行的。很喜欢这种“沟通”方式,用awk/sed/grep等处理文本,命令行里操作无疑是高效的。经常是一段代码从头写到尾,不换行,一气呵成,感觉只有这种方式不会把在脑子里形成的伪代码思路隔断。不足之处,我觉得是命令行毕竟是依赖于终端,history的记录数有限,对于新手或不熟悉linux环境的童鞋们,一旦终端关闭,再想找回之前的代码记录并不是一件容易的事。当然,高手们不会为此感到烦恼。”
那些你接触过的命令行工具
相信每个Linux爱好者都能说出一大串命令行工具,并且能把它们运用的恰到好处!欢迎你们到论坛中(http://bbs.chinaunix.net/thread-4181945-1-1.html)来补充,这里说两个印象比较深刻的~
网友xdsnet说道“用的比较多的是bash环境,以及其上的各类命令行工具,主要有直接bash内置命令行结合系统命令进行系统管理。“
另一位网友jieforest谈到“Linux Shell,Python的Shell、Ruby的Shell等。Linux Shell用于解决服务器维护、搭建生产环境、部署业务、测试等等。Python Shell、Ruby Shell通常用于开发及调试代码。“
面对高大上的数据科学,命令行过时了吗?
打个做菜的比方,来描述数据科学5部分(数据获取、数据清洗、数据探索、数据建模、数据解释),要做一道菜的步骤——a先要有原材料,有菜;b 洗菜,过滤无用数据;c 探索菜谱,能做啥菜;d 建模,实际做菜;e 解释->吃菜,吸收营养。
网友seesea2517说:“和数据打交道多的就是 mysql 了,对于数据库的数据来说可以用 mysql 或 mysqldump 获取数据,可以在 mysql 里做数据过滤,也可以用 awk sed grep 等过滤”命令行工具和技术永远在发挥着它的更接近于底层,一个个对资源(cpu、内存、网络、存储)的有效利用。
也有网友说道:“一直用命令行处理文本问题,而对于数据科学在命令行的操作,命令行会不会略显单薄。”
小编认为:命令行灵活、可增强、可扩展、可扩充无所不在,能使你真正成为更加高效和多产的数据科学家。数据是数据科学工作的主要原料,因此很重要的一点是要能很容易地处理包含数据集的文件。命令行为此提供了许多方便的工具。命令行与其他技术能够无缝集成。一方面,你可以经常在自己的工作环境中采用命令行。例如,可以在Python 和R 中运行命令行工具并捕获其结果。另一方面,也可以将自己的代码(例如以前编写的Python 或R 函数)转变为命令行工具。
【结语】
数据科学中,数据解释最为关键,仅根据数据找出相关性,但缺乏相关领域的理解和解释,是很危险的。就像一个婴儿和一棵树苗,在发育期的时间交集区间内都会长高。看数据,相关性非常好,但这两组数据没有任何关系。如果不能用合理的行业知识解释数据的结果,就很容易犯这种错误。命令行在实施数据计算分析处理方面,是跨行业、跨学科的人进行有效协作,最简单直接的方式。数据分析处理光靠学计算机的专业程序员是不够的,更多的是依靠各个学科领域的专业人士编写的程序包。把他们的成果汇集,还是一个个命令行程序。所以命令行不会过时,命令行工具和技术也发挥着作用,只是调用/处理流程上会发生变化,很多命令行命令(组/集)因为需要重复使用,而为了减低工作强度,会通过配置、预处理等等手段来减少正式命令行输入,但本质还是命令行工具。
数据分析咨询请扫描二维码
在当今以数据为导向的商业环境中,数据分析师的角色变得越来越重要。无论是揭示消费者行为的趋势,还是优化企业运营的效率,数据 ...
2024-11-17金融数学是一门充满挑战和机遇的专业,它将数学、统计学和金融学的知识有机结合,旨在培养能够运用数学和统计方法解决复杂金融市 ...
2024-11-16在信息时代的浪潮中,大数据已成为推动创新的重要力量。无论是在商业、医疗、金融,还是在日常生活中,大数据扮演的角色都愈发举 ...
2024-11-16随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15在快速演变的数字时代,数据分析已成为多个行业的核心驱动力。无论你是刚刚踏入数据分析领域,还是寻求进一步发展的专业人士,理 ...
2024-11-15Python作为一种通用编程语言,以其简单易学、功能强大等特点,成为众多领域的核心技术驱动者。无论是初学者还是有经验的编程人员 ...
2024-11-15在当今数据驱动的世界中,数据分析已成为许多行业的基础。无论是商业决策,产品开发,还是市场策略优化,数据分析都扮演着至关重 ...
2024-11-15数据分析作为现代商业和研究领域不可或缺的一部分,吸引了越来越多的初学者。然而,自学数据分析的过程中,初学者常常会遇到许多 ...
2024-11-15在当今的数据驱动世界中,机器学习方法在数据挖掘与分析中扮演着核心角色。这些方法通过从数据中学习模式和规律来构建模型,实现 ...
2024-11-15随着数据在各个行业的重要性日益增加,数据分析师在商业和技术领域的角色变得至关重要。其核心职责之一便是通过数据可视化,将复 ...
2024-11-15数据分析师的职责不仅仅局限于解析数据和得出结论,更在于将这些复杂的信息转换为清晰、易懂且具有影响力的沟通。良好的沟通能力 ...
2024-11-15数字化转型是企业提升竞争力和实现可持续发展的关键路径。面对快速变化的市场环境,以及技术的飞速发展,企业在数字化转型过程中 ...
2024-11-15CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13