大数据分析切勿纸上谈兵!
“互联网+”引出了大数据问题,针对数据来说,它和水、电资源一样,不神秘但却威力巨大。一百年前能够用上电能的企业是非常了不起的,但今天,没有人会以能够用上电能而引以为傲,因为电——无所不在。同理,数据——伴你左右。
由于互联网的大肆蔓延,随着产生出成千上万、成万上亿且各式各样数据,且这个数据的生产模式还在不断运行、不断改变。我们刚体会出互联网的便利,就被互联网带来的数据巨量化惊到了!大数据是利还是弊?有人说它无所不能,也有人说它只是一场泡沫演出。
如果大数据是泡沫一触就破,但如果不是呢?
为什么说大数据会是泡沫呢?现实有一种说法:大数据可以让你获得所需要的一切,这些对于大数据过多的炒作,到底是真实的还是虚构的?如果你认为这些话是鼓吹大数据的做法,是不能实现的虚假宣传,那么大数据会是一场泡沫演出,一触就破。但如果你相信大数据将会主导未来,并非一场泡沫的话,请你不要停留在大数据的泡沫问题上,落实与变革才是数据分析中的高级之处。
说到泡沫——IT泡沫,我们真正意义上经历过互联网泡沫,大家熟知从1999年到2000年,当时出现了大规模的互联网泡沫。其泡沫破裂之后,众多企业经济受损。然而当时的说法是,互联网本身并非缺少价值,而是我们认为这种价值的获得太过容易、太过迅速,这样才造成了当时的互联网泡沫。也就是说,在当时,普遍认同互联网泡沫的危害是极大的。然而看一看现如今,互联网已经深入到方方面面,以至于对工作、生活都带来了非常深远的影响和改变。这样天地之差的感官与受益,当初的一场泡沫难道没有意义吗?
Gartner公司研究,大数据高级分析已经成为企业当下必须优先考虑的要务。
目前大数据也处于上述这种情况,几年之后,只要大数据一旦可以带来非常好的影响。现在这种泡沫的说法,自然也就一触就破。
在过去,很多企业设立了单独的大数据部门,或者将其分布于不同的分公司中。然而这些数据却分散在企业各个不同的系统里面,并且还由不同的人员加以管理。这与大数据分析厂商Teradata公司所提出的企业级数据仓库存在差异,所谓企业级数据仓库是将数据源整合在一起,深入挖掘企业内部的数据价值。
这里要特别强调的是,我们是否应该避免过去传统数据管理的问题,即要把数据统一集中在一起?在思考这个问题时,我们应该先对大数据的变化做到了如指掌。
数据分析的变革——Teradata天睿公司首席分析官Bill Franks
如今,我们面临数据分析的变革,这非常类似于传统的工业革命。在过去,产品的生产和购买方式都是手工作坊式的。思考过去,一方面因为它是手工制作的,所以不可能得到量产,也不可能得到扩展。另一方面,手工制作下的每一件产品也不可能做到完全一致。而工业革命的到来,彻头彻尾地改变了它,即实现了产品的大规模生产。然而这并不是说手工作坊不重要,手工作坊价值在于定制化的价值,大规模生产中恰恰舍掉了这一部分。
同比大数据分析模式,手工作坊的方式是数据分析的所在,即通过“手工定制”的办法,来针对企业具体的问题,做一些有关大数据的分析。其中,大数据分析厂商通过自己的技术特点为企业提供一些定制的解决方案。
Teradata天睿公司首席分析官Bill Franks
但面对千变万化的市场变革下,针对大数据高级分析,Teradata天睿公司首席分析官Bill Franks提出了企业首要面对的问题:数据的高价值与低价值,对于存在高价值的大数据源,我们需要定制化的或者深层的分析能力。但是对于低价值的大数据资源,我们可不可以通过部署在具体的业务流程中、对大数据进行快速、低成本的分析解决方案?对此,Teradata公司在大数据高级分析中提出了非常落地的解决方案,即可以根据企业所需,在技术里、业务流程里嵌入数据分析,实现自动化地数据分析处理,这样一来,我们不再需要太多的人工参与就可以进行数据分析。在衡量成本与支出的大数据天平上,采用业务驱动的大数据高级分析,可谓是一场数据分析的“工业革命”。
大数据厂商的意义何在?
我们怎么能够利用这些大数据,让其能够带来更多的价值,并利用它做更多的事情呢?针对大数据的挖掘工作来说,从大数据分析厂商中找到相关的工具、技术,以及专业服务应该是我们着重关注的地方。
为此,Teradata公司提出了“三个能够”,可以作为我们衡量的标尺:
大数据分析厂商应该能够挖掘企业业务的问题所在,帮助企业找到具体方法,并提供具体的工具和技术,更大地发挥大数据的作用;
能够帮助企业发现问题,助力企业部署大数据。从业务的部署来说,帮助企业通过在业务当中实现大数据价值;
能够在前端帮助企业发现数据的价值,同时在后台可以进行跟踪,给它进行量化,发现数据价值所在。
既然标尺已经确立,市场需要的大数据分析厂商应该是既能了解企业自身的行业知识,同时又具有专业的大数据分析能力。
在日益变化的市场环境下,Teradata提出的大数据高级分析中,还特别针对新的数据源,包括传感器数据源、关系型数据、文本型数据等,提出了更高的要求,能够作出预测性的维护工作和寻找到新的数据源。有且仅有这样的高级分析,才是我们应该选择的大数据高级分析。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 2 Pandas数据类型 Pandas 有两种自己独有的基本数据结构。需要注意的是,它固然有着两种数据 ...
2024-11-01《Python数据分析极简入门》 第2节 1 Pandas简介 说好开始学Python,怎么到了Pandas? 前面说过,既然定义为极简入门,我们只抓 ...
2024-10-31在当今数据驱动的世界中,数据科学与工程专业的重要性愈发凸显。无论是推动技术进步,还是在商业决策中提供精准分析,这一专业都 ...
2024-10-30在当今信息爆炸的时代,数据已成为企业决策和战略制定的核心资源。爬虫工程师因此成为数据获取和挖掘的关键角色。本文将详细介绍 ...
2024-10-30在当今数据驱动的世界中,数据分析是揭示商业洞察和推动决策的核心力量。选择合适的数据分析工具对于数据专业人士而言至关重要。 ...
2024-10-30能源企业在全球经济和环境保护双重压力下,正面临前所未有的挑战与机遇。数字化转型作为应对这些挑战的关键手段,正在深刻变革传 ...
2024-10-30近年来,随着数据科学的逐步发展,Python语言的使用率也越来越高,不仅可以做数据处理,网页开发,更是数据科学、机器学习、深度 ...
2024-10-30大数据分析师证书 针对不同知识,掌握程度的要求分为【领会】、【熟知】、【应用】三个级别,考生应按照不同知识要求进行学习。 ...
2024-10-30《Python数据分析极简入门》 附:Anaconda安装教程 注:分Windows系统下安装和MacOS系统安装 1. Windows系统下安装 第一步清华大 ...
2024-10-29拥抱数据分析的世界 - 成为一名数据分析工程师是一个充满挑战和机遇的职业选择。要成功地进入这个领域,你需要掌握一系列关键技 ...
2024-10-28降本增效:管理战略的关键 企业管理中的降本增效不仅是一项重要的战略举措,更是激发竞争力、提高盈利能力的关键。这一理念在当 ...
2024-10-28企业数字化是指利用数字技术和信息化手段,对企业的各个方面进行改造和优化,以提升生产效率、服务质量和市场竞争力的过程。实现 ...
2024-10-28数据科学专业毕业后,毕业生可以选择从事多种不同的岗位和领域。数据科学是一个快速发展且广泛应用的领域,毕业生在企业、学术界 ...
2024-10-28学习数据科学与大数据技术是当今职业发展中至关重要的一环。从基础到高级,以下是一些建议的课程路径: 基础课程: Python编程 ...
2024-10-28在信息技术和数据科学领域,数据架构师扮演着至关重要的角色。他们负责设计和管理企业中复杂的数据基础设施,以支持数据驱动的决 ...
2024-10-28进入21世纪以来,随着信息技术的迅猛发展,大数据已经成为全球最具影响力的技术之一,并成为企业数字化转型的核心驱动力。大数据 ...
2024-10-28随着科技的迅猛发展,数字化转型已成为现代企业保持竞争力和推动增长的关键战略之一。数字化不仅仅是技术的应用,它代表着一种全 ...
2024-10-28银行业正处于一个前所未有的数字化转型时期。在数字经济的驱动下,金融科技如大数据、人工智能、生物识别、物联网和云计算等技术 ...
2024-10-28数据分析可视化是一门艺术与科学相结合的技术,其主要目标是将复杂的数据变得更易于理解和分析。通过将数据以图表的形式呈现,我 ...
2024-10-28数据分析师在现代信息密集型的商业世界中扮演着至关重要的角色。他们通过专业的技能和敏锐的商业洞察力,帮助企业从大量数据中提 ...
2024-10-28