针对2016年大数据发展形势的预测
2016年大数据技术将迎来怎样的发展态势?预计机器学习、实时数据即服务、算法市场以及Spark等等都将成为发展热点。
1.首席数据官全面崛起
随着企业努力克服由变化带来的冲击,同时需要立足于数字化时代与竞争对手进行对抗,相信将有更多企业将关注重点放在新的高管职位——首席数据官(简称CDO)身上。而这类角色也将成为推动业务发展战略的中坚力量。
“首席数据官将迎来权力、声明以及……存在感,”Forrester研究公司企业架构首席分析师兼副总裁pian Hopkins在一篇博文中写道。“不过从长远角度看,这一职能角色的可行性尚存在疑问。某些类型的企业,例如数字原住民,可能无法通过任命CDO获得回报。”
2. 支撑业务用户
受到大数据人才短缺以及必要商业信息交付能力匮乏的影响,市场需要更多分析师及数据科学家补充进来,并利用更多工具与相关功能将信息直接交付给对应的用户群体。举例来说,微软与Salesforce双方最近各自公布了此类方案,旨在帮助非程序员用户创建应用以审查商业数据。
3.智能化嵌入
无代码编写要求的应用已经成为企业需要重视的一种可行方案,旨在简化业务用户获取所需信息的流程。不过还将有另一些成果不断涌现,即在企业内各应用程序中直接嵌入分析功能。IDC公司预测称,到2020年将有半数商业分析软件包含以认知计算功能为基础的规范性分析能力。
而着眼于宏观角度,Gartner公司指出“自主性主体与方案”将成为另一大新兴趋势,目前已经出炉的相当方案包括机器人、自动驾驶车辆、虚拟个人助手以及智能顾问等等。
“在未来五年当中,我们将迎来所谓后应用时代,届时各智能化主体将带来动态及背景关联行为及接口,”Gartner公司副总裁兼研究员David Cearley在一份声明当中指出。“IT领导者们应当探索如何利用自主性方案及主体以强化人类活动并承接部分原本必须要以人工方式完成的任务。”
4.人才短缺问题能否得到解决?
还在苦苦寻求出色的数据科学家?相信我,其它企业也面临着同样的困扰。最近由商业咨询企业A.T. Kearney公司发布的一份报告显示,72%的全球领先企业都表示自己很难招聘到合格的数据科学人才。
不过国际分析协会则预测称,随着企业逐步采取新型战术思路,人才短缺的问题可能会在2016年年内得到缓解。
“大型企业不会再过多纠结于人才短缺问题了,”该组织在其预测与优先级展望报告中提到。“相反,他们开始采取一些其它办法解决危机,包括出台新的大学课程、改善招聘流程并建立内部规程,从而培养现有员工掌握分析与数据科学。如此一来,迫切希望实现数据分析能力的企业将最终得偿所愿。”
与此同时,IDC公司发布报告指出,这种人员短缺问题将由数据科学家领域延伸至数据架构以及数据管理层面。这将推动大数据相关专业服务业务从目前到2020年获得高达23%的年均复合增长率。
5.机器学习迎来上扬态势
所谓机器学习,可以理解为创建相关算法以帮助计算机通过经验实现学习,而其也成功吸引到了众多希望利用自动化手段取代以往人工处理流程的企业的高度关注。分析企业Ovum公司预测,机器学习将在2016年当中成为“数据准备与预测分析工作的必要前提”。
而Gartner方面则着眼于下个阶段,将先进机器学习技术视为最重要的未来战略趋势。这家分析企业宣称,机器学习中的各类先进表现形式名为深度神经网络,其能够创造系统并学会自行认知世界。“这一领域发展迅速,而各企业也必须评估自身要如何运用这些技术以取得竞争优势。”
6. 人人都爱Spark
分析企业Ovum公司指出,SQL将在大数据分析工作中获得“至高无上”的地位,但Spark的崛起速度同样非常惊人。“Spark将作为SQL的补充性方案,为我们提供额外的结论获取途径,例如实现图形分析流并帮助开发人员利用自己所熟悉的语言对企业数据库内的数据流进行查询,”Ovum公司首席分析师Tony Baer在一篇博文当中写道。
7.数据即服务业务模式即将出现
IBM公司刚刚收购了Weather公司,而获取后者数据、数据流以及预测分析方案的实质在于着眼于未来。各企业需要将数据流即服务打包成为新的业务模式。也有一部分企业着眼于相关软件包并出售自己的数据。Forrester公司预测称,部分企业将凭借这项发展战略获得市场成功,但“大部分无法取得实质性进展。尽管拥有乐观的承诺,但大多数企业其实很难解决个人信息保护以及对应商业模式所带来的复杂性难题,”Forrester公司副总裁pian Hopkins在他的个人博客当中写道。
8. 实时分析结论
Forrester公司预测数据流提取与分析将在2016年年内成为数字化领域胜出企业们的必要能力。
“将数据转化为实际行动的通道非常狭窄。在未来12个月当中,将有更多立足于Kafka及Spark等开源项目的开源数据流分析方案不断涌现,”Forrester公司副总裁pian Hopkins在博文中写道。
9.算法市场的兴起
这是Forrester公司提出的另一项预测。“各企业将意识到很多算法与其自行开发,不如通过市场购买,而后直接向其中添加数据即可,”Forrester公司的pian Hopkins写道。他同时列出了目前已经出现的几种此类服务,包括Algorithmia、Data Xu以及Kaggle。
数据分析咨询请扫描二维码
数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20统计学专业的就业方向和前景非常广泛且充满机遇。随着大数据、人工智能等技术的快速发展,统计学的重要性进一步凸显,相关人才的 ...
2024-11-20