产业大数据前景可期 深度孵化模式重要性凸显
互联网的快速发展,使我们步入了一个全新的共享经济时代。信息的交互和数据的共享,促使产业升级转型,大数据成为热门议题。国家和企业间的竞争焦点正从资本、土地、人口、能源转向数据资源。
“大数据与传统行业的深度融合是一个重要的创新方向,掌握数据资产的企业群是大数据的首批和直接受益者。”盛山资产的创始合伙人甘世雄对《第一财经日报》记者表示。2015年,中国大数据市场规模达到115.9亿元,随着应用价值的逐步体现及大数据产业的发展,大数据应用将必然扩张到传统产业的方方面面,不断创造新的应用场景。
大数据不仅仅是数据,更是一项未经深度开发的产业领域,吸引着诸多投资者。
甘世雄称,大数据吸引诸多投资者不无道理。第一,市场潜力大,2015年,中国大数据市场规模达到115.9亿元,增速达38%,根据IDC报告,全球大数据市场年增长率达40%,2017年将达530亿美元;第二,数据增长快,数据量以接近几何数级的速度增加,据麦肯锡全球研究院预测,2020年产生的数据量将是2009年的44倍,接近35ZB;第三,应用领域广泛,各类行业兴起“大数据+”,例如金融、教育、医疗、智能硬件等;第四,商业价值高,在垂直行业的应用及商业价值得到认可,例如数据存储空间出租、管理客户关系、模拟实现、个性化精准营销等。
以美国为代表的发达国家在推进大数据应用上已形成从发展战略、法律框架到行动计划的完整布局。但是,中国大数据的基础构架和分析环节依然薄弱,在应用领域的行业分布也不够全面,这既是大数据产业的挑战也是机遇。
“如果通过大数据提升产业的效率,提升产业里面企业的决策水平、营销能力、供应链管理,包括制造,那么将产生一个非常巨大的市场机会。”华院数据CEO宣晓华对《第一财经日报》表示,除了给企业带来增值效应,大数据已经产生了新的商业模式,使企业以大数据为商业模式来经营自己的业务。
对此,中关村大数据产业联盟副秘书长陈新河也表示未来大数据产业将达到万亿,大数据将通过各种网络,带来新的商业形态的变化。
“以前大部分的中小型企业还是停留在数字化或者说从数字到数据的过程,即使是一些上规模的企业,还远没有到数据资产。”华院数据COO麦星表示,大数据产业的发展前景毋庸置疑,但是数据分析和挖掘是一项高难度的技术活,创业的门槛也相对较高,需要业务人员对数学、算法、行业都有较深的理解,多种核心技能的打通往往需要几年时间才能够触类旁通。
“我们会分裂出来自己本身的核心能力进来,导入到这样的新公司里面。我们有专门人员做培育过程,培育团队、培育市场、培育产品。” 据麦星透露,华院数据的深度孵化和传统的投资基金有所不同,包括导入分析能力以及核心人才和培育,深度参与孵化公司的进展。
如何实现大数据和产业的应用对接、真正获取价值也是诸多大数据公司发展面临的难题之一。
“大数据经济不只是一个简单的运用数据的本体或者只是作为一个简单的粗加工来达到经济效益的部分。华院数据希望利用运营商的数据,掌握到更精细的客户的生命期。”华院数据的数据科学家尹相志举例说道,如果希望推广一些母婴的产品,以前的做法是客户到电商网站看了某一款产品之后才在广告上面不停地轰炸。但现在既然有了更完整的数据,透过完整的生命周期的监测,可以知道这个人已经进入到了备孕的状态、怀孕的状态,提早发送相关的信息,希望用这样的方式改变其认知,建立对于品牌的信心、理解,这样的方法不是那么直接的让人觉得是在骚扰他。如何让精准营销做得让大家感觉不到,这是未来发挥大数据经济非常重要的部分。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 7 Pandas分组聚合 分组聚合(group by)顾名思义就是分2步: 先分组:根据某列数据的值进行 ...
2024-11-25数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21