大数据技术为部队卫勤信息化建设的发展和应用提供了广阔空间,涵盖面向医生的临床辅助决策和科研,面向管理者的管理辅助决策、行业监管、绩效考核,面向药品研发的统计学分析、就诊行为,面向战时伤病员救治时效分析等方面。实现了“数据+环境→信息+规律→知识+思想→智慧”这样一个螺旋式学习提升和价值发现过程。
在医药研发方面,大数据技术对于各方面医疗卫生数据进行专业化处理,如对患者甚至大众的行为和情绪的细节化测量成为可能,挖掘其症状特点、行为习惯和喜好等,找到更符合其特点或症状的药品和治疗,并针对性的调整和优化。在医药研发开发部门或公司的新药研发阶段,能够通过大数据技术分析来自互联网上的公众疾病药品需求趋势,确定更为有效的投入产出比,合理配置有限的开发资源。除研发成本外,医药公司能够优化物流信息平台及管理,更快地获取回报。
在疾病诊断方面,2012年,我国高血压发病率接近18%,患者近2亿,糖尿病患者约5000万,血脂异常患者1.6亿。通过健康云平台对每个居民进行智能采集健康数据,居民可以随时查阅,了解自身健康程度。同时,提供专业的在线专家咨询系统,由专家对居民健康程度做出诊断,提醒可能发生的健康问题,避免高危病人转为慢性病患者,避免慢性病患者病情恶化,减轻个人和医保负担,实现疾病科学管理。对于医疗卫生机构,通过对远程监控系统产生数据分析、医院可以减少病人住院时间,减少急诊量,实现提高家庭护理比例和门诊医生预约量的目标。大型医院通过与社区卫生院卫生服务中心建立远程遥控联系,并将在未来提供“从医院到家”的服务。医疗卫生机构,通过实时处理管理系统产生的数据,连同历史数据,利用大数据技术分析就诊资源的使用情况,实现机构科学管理,提高医疗卫生服务水平和效率,引导医疗卫生资源科学规划和配置。大数据还能提升医疗价值,形成个性化医疗,比如基于基因科学的医疗模式,乔布斯在患胰腺癌以后曾做过基因测序,希望能够通过找出DNA中的缺陷片断方法来战胜癌症。
在公共卫生管理方面,大数据可以连续整合和分析公共卫生数据,通过覆盖全国的患者电子病历数据库进行全面疫情监测,提高疾病预报和预警能力,防止疫情暴发。公共卫生部门则可以通过覆盖区域的卫生综合管理信息平台和居民健康信息数据库,快速检测传染病,进行全面疫情监测,并通过集成疾病监测和响应程序,进行快速响应,这些都将减少医疗索赔支出、降低传染病感染率。通过提供准确和及时的公众健康咨询,将会大幅提高公众健康风险意识,同时也将降低传染病感染风险。2003年,学术界整合出H5N1禽流感感染风险地图,研究发行了H7N9人类病例区域;通过全面分析患者特征数据和医疗数据,然后确定哪些人是某类疾病的易感人群,使之尽早接受预防干预。
在健康危险因素分析方面,随着互联网、物联网、医疗卫生信息系统及相关信息系统等普遍使用,可以系统全面地收集健康危险因素数据,包括环境因素(利用GIS系统采集大气、土壤、水文等数据),生物因素(包括致病性微生物、细菌、病毒真菌等监测数据),经济社会因素(分析经济收入、营养条件、人口迁移、城镇化、教育就业等因素数据),利用大数据技术对健康危险因素进行对比分析,针对不同区域、人群进行评估和遴选健康相关危险因素及制作健康监测评估图谱和知识库,提出居民健康干预的有限领域和有针对性的干预计划,促进居民健康水平的提高。如美国一个医疗小组对一名“腓骨肌萎缩”病人和他的10余名亲属进行全基因测序,随后使用专用设备和先进的统计分析软件对获得的数百G的数据进行对比分析,很快就精确地获得了致病基因和发生突变的位点,为该病的预防提了可靠的遗传学依据。
战时卫勤保障方面,一是伤员时效性救治。现代卫勤保障已经越来越依赖高科技手段,将伤员基本信息及其医疗后送信息进行数字化处理,通过战时卫勤信息平台和信息处理系统实现伤员卫勤信息共享,充分发挥卫勤信息优势,伤病员后送确保战时各级救治机构实施精确化卫勤保障,为卫勤部门和救护机构在伤员第一时间第一地点提供信息保障,从而实现伤员“时效救治”提供时间保证;伤后不同救治措施,其救治效果不同,数字化伤员为实施高级生命支持治疗提供了量化依据,为实现伤病员“时效救治”提供了质的保证;数字化伤病信息随伤员在后送链上流动,其信息编码随同伤情变化而变化,为后方医疗机构采取适当的救护措施提供了“量”上的依据;数字化伤员信息以电子形式记录伤员信息档案,借助现有的成熟的网络系统,通过电子病历为远程伤员会诊提供技术支持。二是物资实时可知、可视、可感、可控。战救物资智能化管理通过射频识别(RFID)、条形码识别、数字化掌上电脑(PDA)等技术手段,实现了战救物资保障智能化应用,对供应、运输、存储、配送、装配、在用、报废环节进行分析、总结,采用智能识别技术、智能采集技术、智能定位技术、智能追踪技术、智能监控技术等新一代信息技术,形成智能化应用模式,以满足野战物资保障精益化管理的需要。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31提到数据分析,你脑海里可能会浮现出一群“数字控”抱着电脑,在海量数据里疯狂敲代码的画面。但事实是,数据分析并没有你想象的 ...
2024-12-31关于数据分析师是否会成为失业高危职业,近年来的讨论层出不穷。在这个快速变化的时代,技术进步让人既兴奋又不安。今天,我们从 ...
2024-12-30数据分析师在现代企业中扮演着关键角色,他们的工作内容不仅丰富多样,还对企业的决策和发展起着重要的作用。正如一个经验丰富的 ...
2024-12-29