DT时代企业如何跑的更快:利用数据和分析实现转型
在过去几年中,CSP(通信服务提供商)对大数据分析能力的关注和投资不断增加。领导者(或者叫领跑者)正在加快步伐,抛开对手,并且获得巨大的业务和竞争优势。通过考察日益增大的绩效差距,我们发现,认为自己属于领跑者的CSP(通信服务提供商)中的23%有三项主要优先任务。
总体来讲,这些优先任务包括:以客户为中心、运营效率和创造收入(见图1)。目前,绝大多数的收益来自于通过以客户为中心的做法而实现的改进,而71%的CSP(通信服务提供商)表示,他们在第一年即实现了分析投资回报。
你是领跑者吗?
根据对于分析和支持分析的技术能力的使用程度,企业可划分为四个群体:
• 领跑者是数据驱动型企业,它们采用深入的分析能力在大多数业务职能部门中推动业务流程;
• 慢跑者主要利用分析能力实现运营的自动化和优化,但没有普遍使用分析能力;
• 参与者处于早期采用阶段,但他们期望在多个业务职能部门中使用分析技术;
• 旁观者也处于早期采用阶段,但他们的计划仅包括在业务职能部门有限使用分析技术。
近四分之一的CSP(通信服务提供商)认为自己属于领跑者,而电信行业中的其他四分之三CSP(通信服务提供商)表现“落后”,并且面临着竞争优势被领跑者夺去的风险。我们的研究表明,领跑者正制定明确的分析战略和能力计划,并且获得充足的投资回报,他们具有三个共同特征(见图3)。在分析成熟度方面落后的CSP可向领导者学习如何缩小绩效差距。
利用数据和分析实现转型
为了进一步提高CSP(通信服务提供商)的能力,他们的分析计划必须注重以下方面:增强客户关系和体验;实现企业的卓越运营;以及创造新的收入来源。
建议1:建立以客户为中心的文化
利用来自结构化和非结构化数据(例如呼叫中心脚本)的行为模式、趋势和评论,客户档案、交互和操作增加有深度的内容。利用外部数据,包括社交媒体和客户生成的文本。
实现从后见之明(描述性和诊断分析)到先见之明(预测性和规范分析)的战略性飞跃。例如,通过执行分析而预测客户流失,或者确定客户接受某种提议的可能性。
向认知计算投资,以执行更先进的分析,并且促进基于上下文的实时客户交流。例如,在多个渠道的对话中使用认知技术改善联系中心体验。
建议2:提高运营效率
将分析嵌入到业务流程中,通过预测结果并允许员工在每种情景下快速且准确地采取行动而自动处理、推动或通知关键业务流程。
利用第三方社交媒体(例如Twitter)丰富内部数据流,创建一组新的企业应用而增强对市场的了解。利用这些信息了解新产品或新服务的问题,并且预测长期趋势。
制定移动战略,允许员工通过移动设备接入企业资产,从而随时随地利用分析能力获得洞察。即时地将智能融合到尽可能多的行动中。
建议3:创造新收入
与您的生态系统交流。全面了解更大范围的生态系统对您意味着什么。评估您能够和希望扮演的角色。使用生态系统与第三方协作创造更多收入。
制定新能力和新业务模式。将您的独特信息转化为有用的数据,允许生态系统合作伙伴构建创新应用。
了解并接受由API引领的经济。以API形式向第三方开放您的独特资产,包括大数据和分析,从而释放额外的业务价值。
案例:采用机器学习提高对客户问题的响应能力
东亚一家CSP(通信服务提供商)希望其呼叫中心操作员快速回答客户的问题,但这需要搜索由,000多条常见问题答案构成的数据库。通过将自然语言处理分析与机器学习技术相结合,公司新的客户问题响应解决方案克服了长期以来的障碍,即为非结构化用户问题创建相关且准确的答案。该解决方案帮助CSP提高了服务质量和效率,从而增强了客户满意度。
案例:使用预测分析提高生产力
来自利润和响应速度的压力持续增大,亚太地区一家CSP(通信服务提供商)需要通过一种方式快速且高性价比地追踪其营销业务表现。公司部署了预测分析解决方案,并开发了客户倾向模型,用于追踪客户偏好和身份,以及业务机遇。结果,该CSP(通信服务提供商)通过提高生产力和竞争能力而将净收入增加了10%,业务审查的速度加快了92%,而特定场景报告的速度加快了190倍。
案例:大数据平台即服务
菲律宾CSP PLDT已经投资3000万美元开发了大数据平台,并且计划再向大数据业务投资1亿美元,以帮助企业和政府机构为其目标市场开发更有效的产品、服务和计划。金融服务、物流、零售、招待、医疗和公用事业都是预计将从大数据分析中获益最高的行业- 至少在初期如此。CDA数据分析师培训
数据分析咨询请扫描二维码
数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21