每人计客流的数据运营之道
数据就像水,水利万物,也能毁万物。怎样才能用好大数据,让数据化运营落地?
第一招:找到数据。
许多企业为了实现经营目标,不惜重金请来数据分析师,志在通过数据运营来开疆拓土。但是并非请来数据分析师就高枕无忧了,很多人只能称之为数据师,因为他们还未达到分析师的水平,空有满腹理论,却无商业意识,不懂得究竟要运用哪些数据去分析,自己都坠入云里雾里。
他们把没有经过整理的繁杂的数据一股脑像倒垃圾一样倒给了CEO,没有解释这些数据背后的含义、体现客户的什么行为、这些曲线有什么意义等等。当CEO拿到这些数量庞大零碎的数据时,他们内心是崩溃的。
CEO需要一目了然地知道这些数据到底反映了啥玩意儿,市场有何动向?而不是花多余的精力自己来查阅资料解读数据。对商业数据要有如同八爪鱼般敏感的触角。例如得知近两年老年人数量占比不断上升的时候,就可以预测到跟老年人相关的产品销量会随之上升。
数据分析师需要深入与业务部门接触,甚至到业务部门轮岗,零距离了解业务部门,开发商业触觉。CEO需要看的是对数据的分析,能准确把握市场的方向。
第二招:沟通数据。
很多行业都希望通过大数据进行改变,电子商务在数据获取方面有天然优势,但是很少能在数据分析环节做到完善,而如今实体商业对数据分析也越来越重视。结果就是,公司积极地收集数据,后来发现数据非常混乱和分散,不知何用,数据之间无法关联,分析不出其中隐含的内容,渐渐的这些数据就死在了报表中。
在数据收集之时就需要保证数据的精准度,并且统一标准和详细分类,这就需要数据分析师和各业务部门进行互联,避免各自为政地整理数据。而数据分析师必须站在业务员的角度来客观分析手中的数据,才能给CEO一个真实的分析结果。
沟通数据是部门之间的沟通,部门和数据之间的沟通,也是数据和数据之间的沟通。在商业场景中,多数时候需要客流量、成交率、连带率、客单价、坪效、体验率等不同维度之间的数据进行互相联系并分析,才能得出结论。例如客流量翻倍增长,成交率下降,排查出员工劳动强度大,接待能力不足。
在这招中,统一不同部门统计数据的标准,保证不同部门之间数据能够顺利交换,不同维度数据之间融会贯通是重中之重。
第三招:数据运营和分享。
第一,将数据放在框架中进行指标化分解,分析出数据背后隐藏的真相,才不会被表面的信息所迷惑。例如甲店来了100个顾客,成交了10人;乙店来了150人,成交了12人,从成交人数来看,乙店做得更好,但是分析成家率的话,甲店成交率是10%,乙店成交率是8%,其实甲店效率更高。
第二,寻找参照物。数据需要进行横向和纵向对比参照,参照物不同,得出结果不同。例如企业在进行促销活动的时候,往往需要和同比上期的促销幅度、客流量、成交率、顾客对活动的评价等方面进行比较。而不是跟平时销售日进行比对,如果选错对象,数据分析就毫无意义。
第三,数据收集之后,当然是用来分析和用来看的。在这个看颜值的时代,不恰当的展现形式,会使得对数据的分析产生理解障碍和误解,例如最原始的EXECL表,能把近视眼看成老花眼。好的数据展现形式有利于决策者读懂数据意义,做出合理决策。
数据分析的最终目的就发现并解决问题,有效的获取、使用、分享、协同、连接、简化数据,让每个人都能够对数据作出分析和合理的判断,这是最理想的状态,当员工都积极投入这样的数据分析工作之中,数据运营就进入了一个良性循环。
数据分析咨询请扫描二维码
在当今以数据为导向的商业环境中,数据分析师的角色变得越来越重要。无论是揭示消费者行为的趋势,还是优化企业运营的效率,数据 ...
2024-11-17在当今以数据为导向的商业环境中,数据分析师的角色变得越来越重要。无论是揭示消费者行为的趋势,还是优化企业运营的效率,数据 ...
2024-11-17金融数学是一门充满挑战和机遇的专业,它将数学、统计学和金融学的知识有机结合,旨在培养能够运用数学和统计方法解决复杂金融市 ...
2024-11-16在信息时代的浪潮中,大数据已成为推动创新的重要力量。无论是在商业、医疗、金融,还是在日常生活中,大数据扮演的角色都愈发举 ...
2024-11-16随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15在快速演变的数字时代,数据分析已成为多个行业的核心驱动力。无论你是刚刚踏入数据分析领域,还是寻求进一步发展的专业人士,理 ...
2024-11-15Python作为一种通用编程语言,以其简单易学、功能强大等特点,成为众多领域的核心技术驱动者。无论是初学者还是有经验的编程人员 ...
2024-11-15在当今数据驱动的世界中,数据分析已成为许多行业的基础。无论是商业决策,产品开发,还是市场策略优化,数据分析都扮演着至关重 ...
2024-11-15数据分析作为现代商业和研究领域不可或缺的一部分,吸引了越来越多的初学者。然而,自学数据分析的过程中,初学者常常会遇到许多 ...
2024-11-15在当今的数据驱动世界中,机器学习方法在数据挖掘与分析中扮演着核心角色。这些方法通过从数据中学习模式和规律来构建模型,实现 ...
2024-11-15随着数据在各个行业的重要性日益增加,数据分析师在商业和技术领域的角色变得至关重要。其核心职责之一便是通过数据可视化,将复 ...
2024-11-15数据分析师的职责不仅仅局限于解析数据和得出结论,更在于将这些复杂的信息转换为清晰、易懂且具有影响力的沟通。良好的沟通能力 ...
2024-11-15数字化转型是企业提升竞争力和实现可持续发展的关键路径。面对快速变化的市场环境,以及技术的飞速发展,企业在数字化转型过程中 ...
2024-11-15CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14