大数据风控已显山露水 哪些数据才是风控所需?
美国科学家近日宣布探测到引力波的存在,如获证实,将是物理学界里程碑式的重大成果。一时间,“引力波”成为热词,相关的知识普及也随之而来。然而,5年前国内一位下岗工人在节目上提及引力波时,却遭到了在场嘉宾的讥讽,这位工人还没有对自己的“发明发现”做详细阐述,便被频频打断和否定,只得匆匆下场。五年后的如今,引力波被捕捉到有存在的痕迹,着实是戏剧化的一幕。
当引力波还是一个新鲜事物时,人们没有预见到它的未来,甚至有人无知地直接否认它的存在。这让我也想到“青蒿素”,在屠呦呦教授没拿奖之前也无人所知。然而,纵然当初无人问津,如今可不是大放异彩。
如今的“大数据风控”这一词,或许就如五年前的“引力波”、一年前的“青蒿素”一样,尚处于一个初生试水、萌芽之姿的阶段,机遇与挑战并存。一方面,不可否认地存在鱼龙混杂、乱象丛生的问题,”挂羊头卖狗肉”有名无实的事例也有,对于一些没有核心数据却吹嘘数据风控的大忽悠平台我们当然要擦亮火眼金睛。做大数据风控本要求的是硬技术,谁能真正掌握谁才能扎根发展,行业内已经出现了一些有益的探索,显示了用大数据做风控的优势。
大数据风控已显山露水
目前市场的大数据风控系统现状是:大公司通过大数据挖掘,自建信用评级系统;小公司通过信息分享,借助第三方获得信用评级咨询服务。
已有的风控大致分为两种模式,一种是类似于阿里的风控模式,他们通过自身系统大量的电商交易以及支付信息数据建立了封闭系统的信用评级和风控模型。另外一种则是众多中小互联网金融公司通过贡献数据给一个中间征信机构,再分享征信信息。
那么,哪些数据才是风控所需的呢?
1、电商大数据
电商平台能够累积大量的交易信息,可作为信用评级参考的原材料。阿里金融是利用电商大数据进行风控的领头羊,在很多行业人士还在云里雾里的时候,阿里已经建立了相对完善的大数据挖掘系统。通过阿里巴巴、淘宝、天猫、支付宝等积累的大量交易支付数据作为最基本的数据原料,再加上卖家提供的销售数据、银行流水、水电缴纳等情况作为辅助数据原料。所有信息汇总后,将数值输入网络行为评分模型,进行信用评级。
2、信贷记录大数据
小贷类网站积累的信贷大数据包括信贷额度、违约记录等等。但单一企业缺陷在于数据的数量级别低和地域性太强。还有部分小贷网站平台通过线下采集数据转移到线上的方式来完善信用数据。这些特点决定了如果单兵作战他们必定付出巨大成本。因此,贡献数据、共享数据的模式正逐步被认可,抱团取暖胜过单打独斗。
3、社交网站大数据
社交大数据是风控大数据的一个重要组成部分。通过社交人际网络关系数据和生活圈中其他如水电煤缴费信息、信用卡还款信息、支付和交易信息等,可以多方面地反映出用户的习惯偏好、价值取向、人际交往、信誉度和活跃度等信息。
利用社交网站大数据进行网络借贷风控的典型是美国的Lending Club。Lending club于2007年在facebook上开张,通过在上面镶嵌的一款应用搭建借贷双方平台,利用社交网络关系数据和朋友之间的相互信任聚合人气。借款人被分为若干信用等级,但是却不必公布自己的信用历史。
4、信用卡借记类数据
信用卡类网站的大数据同样对互联网金融的风险控制非常有价值。申请信用卡的年份、是否通过、授信额度、卡片种类;信用卡还款数额、对优惠信息的关注等都可以作为信用评级的参考数据。
5、消费数据
第三方支付类平台做风控的机遇在于,能基于用户的消费数据做信用分析。支付的方向、每月支付的额度、购买产品品牌都可以作为信用评级的重要参考数据。
6、生活服务类数据
生活服务类网站的大数据如水、电、煤气、有线电视、电话、网络费、物业费交纳平台则客观真实地反映了个人的基本信息,是信用评级中一类重要的数据类型。
大数据的海量也就意味着,对数据的理解和对有效数据的挑选非常重要,并非所有数据都是风控有用信息。要选取哪些数据原料进行挖掘,什么数据才是金融风控真正所需的,对数据的类型和实效性都要有所考量。
17年前,很多人认为互联网是泡沫,现在证明互联网没被高估;7年前,很多人认为电子商务是泡沫,但今天中国已经有几亿人的电商市场。如今,大数据风控方兴未艾,也伴随着一些泡沫,但只要它朝着健康的方向发展,未来已来。大数据的相关理论与分析方法,很好地弥补了数据获得的时间连续性、数据的地理位置分布、数据样本的覆盖程度等传统分析方法中的不足,其精准度更高、覆盖面更广和响应速度更快的特点,运用到风险防控中大有裨益。大数据风控本身并非是忽悠,是真的具有发展的潜力,只是其研究还更待成熟。
最后借助苏萌教授在进行大数据辩论时的一句总结:所有新鲜事物都需要一定的泡沫,才能吸引到更多的投资和关注,最终才能让真正好的东西沉淀下来。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31