人人都在说大数据,用途到底在哪
在电影《永无止境》中,落魄的作家库伯利用药物将智商提高,做到可以将世界上已存的海量数据进行挖掘、分析,10天内在股市就赚了200万美元。这部电影最大的意义在于告诉人们数据挖掘的潜在价值,毕竟对于曾经只是收集、统计数据的公司来说,如何利用有些鸡肋的数据变现将是一门新的学问。
虽然大数据的概念这两年已经被吹捧的有些过于膨胀,但这项技术被人们感知的地方却很少。我们在与身边非科技圈朋友的交流中发现,多半儿人甚至不知道「大数据这货到底是干嘛的」。
周涛博士在成都创办大数据公司——数之联科技
CTO方育柯是在2006年加入数之联科技的,CEO周涛在2009年博士毕业后加入了团队。公司最早只是电子科技大学中由三个人组成的数据挖掘实验室,一直为中兴、华为提供相应的服务。2010年大数据火起来之后,团队认为“与其为大公司提供模块化的算法服务,不如专门成立一家公司做这方面的业务”。所以两年之后,这家公司正式成立。
作为一家做大数据分析的公司,方育柯首先回答了雷锋网记者关于大数据能做什么的疑问。针对客户的需求,数之联公司目前主推四项服务:
大数据顶层规划服务,很多企业其实并不清楚大数据该怎么落地,顶层规划服务可以深入到不同的公司,实现数据协同到业务协同
云端数据挖掘平台,可以降低数据分析师做数据挖掘的门槛,快速在云端实现数据建模。据他们了解,这是国内第一家分布式数据挖掘平台(国外有IBM的PSS等)
电商数据服务平台,帮助传统企业实现互联网+的模式,分析销售数据并进行反馈。目前与义乌购(小商品电商平台)有合作
图像搜索,在ToC市场,他们推出了拍图购,用户浏览网页时看到喜欢的衣服可以用拍图购直接进行搜索。而在ToB市场,数之联也在与电商平台合作,可以做到用户分析预测、客户流失情况统计、精准化营销等
传统企业预估销售额和收集产品改进意见时,采用的方式往往是做成百上千份调查问卷。这种方式既耗费时间, 又无法保证精准性。方育柯认为,大数据的作用就在于从数据角度帮助企业进行决策。
将大数据应用到普通消费者的生活中的现象将会越来越多,但很显然,人们能够直观体验到的却很少。在交流中记者发现,虽然有在ToC市场进行探索,但企业级服务才是目前他们的核心。
提到数据挖掘分析,就不能不说数据的来源。方育柯在交流中向记者介绍,公司收集的数据60-70%来自于互联网的公开协议,包括电商产品的图片和信息,微博、知乎等社交平台。另外则是来源于行业客户的合作提供。他向我们强调,公司从来不会从第三方获得敏感信息。
不论是数据的收集还是分析,对很多人来讲,首先能想到的就是百度、阿里这样的巨头公司。方育柯告诉记者,阿里云这一类产品帮助的是中小企业快速搭建云平台,解决方案是通用型的。数之联要做的则是通过深度整合大数据,将企业的业务流程进行分析、优化。“针对不同企业的特点,利用数据分析搭建平台,本质上来讲我们并不是同一个类型。”
在一些细分市场,比如企业征信,已经有邓白氏这类大型国际公司存在,优势就在于拥有很多企业的经营数据。方育柯向记者介绍,邓白氏在数据的收集和分析方式都比较传统,并且对于国内市场来说,外企总会有水土不服的现象。数之联由于与政府和企业合作的原因,对于国内市场的了解是外企所不具备的。这也是他们不惧怕邓白氏一类外企竞争的原因。
应用数据能如何改变日常生活?方育柯向记者举了个例子,给小区送快递时会放在门口的箱格里,利用数据分析收件人何时回家,改进存放时间可以提高箱格的使用效率。还可以针对收件人的身高等等因素调整到适合的位置。
技术实现或许没有困难,但雷锋网关心的是技术能否尽快落地,对于国内来说,要克服的显然还有很多问题。
人人都在说大数据,在于方育柯的交流中可以发现,现阶段的大数据主要围绕企业提供服务。
后记
数之联在去年拿了第一笔500万的融资,今年正在洽谈第二轮融资,预计估值将会翻一倍。作为母公司,人数已经达到80多人,整个集团的员工数达到了400多人。即使如此,方育柯还是告诉雷锋网记者,公司目前还是缺少相应的人才。
在采访结束之前,我们问方育柯:“既然大数据的概念已经被吹捧得很严重了,是否在推广上并不费力?合作谈的轻松么?”方育柯表示:“在概念盛行之下,行业内最缺的应该是标杆性的产品和应用。”他解释说:“很多企业认为大数据是万能的,可以短时间内完成数据平台搭建,并且可以让销量增长很多倍。这让我们很头疼,最先做的反而是引导客户降低预期,真正得去认识大数据。”
数据分析咨询请扫描二维码
统计学基础 - 理解统计学的基本概念和方法是数据分析师必备的技能之一。统计学为他们提供了处理数据、进行推断和建模的基础。 数 ...
2024-11-25数据分析师在如今信息爆炸的时代扮演着至关重要的角色。他们不仅需要具备扎实的数据分析技能,还需要不断学习和适应不断发展的技 ...
2024-11-25数据分析师的工作职责涉及多个关键方面,从数据的获取到处理、分析再到可视化,旨在为企业的决策提供有力支持。让我们深入了解数 ...
2024-11-25数据分析师:洞察力量的引擎 数据分析师的兴起 数据分析师行业目前正处于快速发展阶段,市场需求持续增长,薪资水平也有所提升。 ...
2024-11-25数据收集与整理 - 从各种来源收集数据,清洗和整理以确保数据质量和可用性。 数据分析与建模 - 运用统计学方法和机器学习模型对 ...
2024-11-25数据分析是当今社会中不可或缺的一项技能,涵盖了广泛的工具和技术。其中,掌握各种数据处理函数对于数据分析师至关重要。本文将 ...
2024-11-25“大数据治理”是一个涵盖广泛的复杂概念,其核心在于确保大规模、多样化的数据资源能够被有效管理和利用。不仅涉及数据的采集、 ...
2024-11-25一、引言 背景介绍 随着信息技术的快速发展和互联网的普及,大数据已经成为现代社会的重要资产。大数据的兴起不仅推动了各行各业 ...
2024-11-25《Python数据分析极简入门》 第2节 7 Pandas分组聚合 分组聚合(group by)顾名思义就是分2步: 先分组:根据某列数据的值进行 ...
2024-11-25数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22