不解决这六个问题,农商行应用大数据就是扯
中国人民银行参事、国家信息化专家咨询委员会委员陈静曾指出:没有信息化,就没有金融的现代化。进入信息化时代以来,银行的生存环境发生了巨大的变化,信息化建设和大数据的应用,已经成为银行业竞争的一个筹码,也是获得竞争优势的一个方法。
大数据在帆软传说哥看来,有两个含义,一是大量的数据,二是能产生价值的数据。对银行来说,数据量从来都不缺,缺少的是能让产生价值的数据。传说哥曾在《大数据时代下,百货行业如何革命?》一文中讨论过数据的应用方向,一是围绕业务、用户的数据应用,另一个是围绕企业自身管理、运营的数据应用。对于银行业来讲数据的应用方向也是如此。老祖宗教育我们,打铁还需自身硬,所以提取能产生价值的数据用于优化企业运营,是大数据时信息化建设的关键一步,也是当前银行业正在走的一步。
银行业按照形态,分为农村商业银行和城市商业银行两类。这次先随传说哥一起探讨农商行信息化的现状和问题。
农村商业银行与城市农村商业银行的信息化建设不同,城市商业银行是经过分散的小系统整合成统一联网系统,再逐渐演化丰富,进而形成一套信息化基础平台,是一个大一统平台。而农村商业银行是逐渐从信用联社的网络中剥离,全国两千多家农商行,其信息化之路也是相对分散和独立的,信息化水平尤其是数据应用水平较城市商业银行落后许多。
帆软公司银行业信息化顾问杨扬在其论文《农商行统一数据分析平台建设方案》中把农商行信息化水平由低至高分为4大类型,大致为:
1、农商行没有数据中心,没有报表系统,报表在各个系统呈现,其余都是Excel文件,日常管理麻烦、响应低效,业务人员经常不知道去哪边找数据,数据的利用效率最低;
2、农商行有报表系统,但是响应缓慢,导致报表系统价值削弱,业务人员继续找技术人员索要数据,形成大量Excel文件,无法进行有效分析汇总;
3、农商行有报表系统,维护也及时,不过技术人员疲于应对日常取数报表需求,业务人员分析意识薄弱,导致为了看报表而做报表;
4、农商行的业务人员可以自主取数进行各种数据、报表分析,技术人员提供自主取数平台,同时协助业务部门落实数据挖掘,结合移动端呈现,达到数据价值呈现的目的。
很不幸的是大多数农商行都停留在第二类别以前,少数处在第三类别。这三个类别信息化程度虽然不同,但总结起来,无非就是系统多的问题、需求变更的响应问题、口径不统一的问题、数据展示分析效率的问题、无法移动办公的问题和科技部人事动力的问题,具体如下:
1:系统多。农商行的薪酬、小额贷等自建系统比较多,各个系统报表通过代码实现,样式杂乱,交接麻烦,对于前端决策和业务部门需求,无法提供有力支撑;
2:需求变更多。业务部门为了运营和管理需要,经常新增报表,也会依据领导关注的领域进行分析调整,以及省ODS口径调整也会带来报表重新设计等;
3:口径不一致。省统计口径和市、县不一致,市县需要重新加工;
4:取数效率慢。业务人员取数需要技术人员提供,严重影响双方效率;
5:无法做到移动办公。领导出差无法实时查看到行内核心KPI指标,缺乏移动数据呈现;
6:科技部价值无法体现:大部分系统都是软件商开发,科技部只是维护工作,体现不出自己的价值;
可以看到,这六大问题,基本上掐死了农商行应用大数据的命脉:数据没办法应用或者很难去用,组织和实现数据应用的部门无动力和价值感。如此的情况,怎么可能去玩好大数据呢?
新时代的到来,总会造就一批弄潮儿,也会抛弃一批吊车尾。要想实现在大数据时代弯道超车,就要让数据为运营服务,为企业利润服务,为企业战略服务。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31提到数据分析,你脑海里可能会浮现出一群“数字控”抱着电脑,在海量数据里疯狂敲代码的画面。但事实是,数据分析并没有你想象的 ...
2024-12-31关于数据分析师是否会成为失业高危职业,近年来的讨论层出不穷。在这个快速变化的时代,技术进步让人既兴奋又不安。今天,我们从 ...
2024-12-30数据分析师在现代企业中扮演着关键角色,他们的工作内容不仅丰富多样,还对企业的决策和发展起着重要的作用。正如一个经验丰富的 ...
2024-12-29数据分析师的能力要求 在当今的数据主导时代,数据分析师的角色变得尤为重要。他们不仅需要具备深厚的技术背景,还需要拥有业务 ...
2024-12-29