在SPSS中进行复选题数据分析
复选题分析(Multiple Response)
最近群里经常有朋友在问;“怎样用SPSS输入多项选择题啊?”于是本人整理以往学习资料,希望这些东西能够帮他们解决问题。
一、复选题分析的原理
(一)复选题分析的限制和用途
复选题在许多问卷或数据收集中经常出现,例如:某家旅行社询问采访者最近一年内,曾经搭乘国内四家航空公司(东方、南方、上海、海南)中的哪几家,这就是一个典型的复选题问题。通常这些复选题只是请受访者构选“有“或”无“,亦即该选项只能建立数据时,以命名尺度的”1“与”0“来呈现,但命名量表是精度最低的测量方式,其会限制这些复选题可使用的统计检验分析方法。
复选题经常被使用,但其通常使用的统计分析只有频次分析表与交叉分析表等描述性统计,且不能进行后续所有的检验分析,并且经常被滥用。如果进行非学术性研究,只想了解复选项目的频次分布,则可使用复选题;但如果进行学术性研究,则建议尽量不使用复选题,而尽量使用复选题的变形。例如:询问受访者乘坐各家航空公司的乘坐次数、询问每种减肥方式的使用比重、询问对每种兴趣的偏好程度或所花费的时间等,即将原来的命名量表测量变量变为等距或以上的量表。
(二)如何在SPSS中创建复选题
如何在SPSS中输入多项选者题以及如何进行频次和交叉分析,下面将举例说明。例如调查学生的“上网项目“和”嗜好“两组复选题目,其中“上网项目”包括找数据、网站购物、在线游戏、聊天室等;经常从事的“嗜好“包括打球、看电视、打电动、逛街、唱歌等。
复选题在建立数据文件时,必须将每一个选项设为一个变量,而非一组变量成为一个变量,例如:这里上网项目与嗜好各有4个和5个选项,合计9个选项,则需要新建9个变量,如下图所示:
二、定义复选题分析集(Define Sets)
点击Multiple Response选单下的Define sets,将出现Define Multiple Response sets对话框,如下图所示:
(一)复选题分析集名称(Name)
可将复选题分成多重二分集和多类别集合,最多可以定义20个复选题分析集。每个集合必须有一个唯一的名称。每个复选题分析集都必须指定专属的名称,最多可有7个字符。
在上面的例子中,首先在Set Definition框中选择第一个分析集所定义的变量(找数据、网站购物、在线游戏、聊天室)到右边的Variables in Set框中,然后在Name框中,输入分析集名称“上网项目”,并按下add键之后就会在右边的Multiple Response Sets框中出现“$上网项目“,重复此步骤,定义其他分析集。
(二)复选题分析集的数据编码
复选题可编成二分变量或类别变量:
⑴ 二分变量(Dichotomies Counted Values):选取二分法以建立多重二分集,如果在计数值中输入整数值,则计数值至少会出现一次,而计数值中的每个变量都会变成多重二分集中的类别。
⑵ 选取类别(Categories):会建立多类别集合。在多重类别变量集合类别范围的最小值和最大值中,输入整数值。程序会合计范围内所有不同的整数值,空的类别将不会列在表中。例如:受访者的上网项目不会超过三种的话,就可以只要建立三个而非四个变量,且每个变量有四种代码,每个代码代表一种上网项目,如:1、2、3、4分别代表找资料、网站购物、在线游戏、聊天室,则第一个观测值“陈一”的三种上网代码分别是134.
通常这2种方式所得到的结果是相同的,但建议采用二分变量,因为用0和1较易输入,且每个二分变量皆可当命名量表,可分别针对每个复选题变量进行后续的独立样本T检验与卡方检验。
三、复选题分析频次分不表(Frequencies)
“复选题分析频次分析表”程序可以产生复选题分析集的频次分布表。由Multiple ResponseàFrequencies,可打开Multiple Response Frequencies对话框,如下图所示:
对于多重二分集而言,SPSS会用分析集的变量标记当做输出中的类别名称。如果没有定义分析集变量标记的话,变量名称会当作标记使用。其对应的命令语句如下:
MULT RESPONSE
GROUPS=$上网项目 (找资料网站购物 在线游戏 聊天室 (1))
$嗜好 (打球 逛街打电动 看电视 唱歌 (1))
/FREQUENCIES=$上网项目 $嗜好 .
四、复选题分析交叉表(Crosstabs)
“复选题分析交叉表“程序可产生复选题分析集交叉表。由Multiple ResponseàCrosstabs,可打开Multiple Response Crosstabs对话框,如下图所示:
复选题的Crosstabs为一个变量与多个变量的交叉表,例如用性别与上网项目来分析,对应的程序语句为:
MULT RESPONSE
GROUPS=$上网项目 (找资料网站购物 在线游戏 聊天室 (1))
/VARIABLES=性别(0 1)
/TABLES=性别 BY $上网项目
/BASE=CASES .
结果如下:
数据分析咨询请扫描二维码
数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20统计学专业的就业方向和前景非常广泛且充满机遇。随着大数据、人工智能等技术的快速发展,统计学的重要性进一步凸显,相关人才的 ...
2024-11-20