“大数据”可是个识才利器
要让事实和数据说话
从以往各地各部门引进人才的情况看,存在的问题主要有三:一是所引人才并非高端,这属于层次误判;二是所引人才并不对口,这属于短缺精细;三是所引人才虽然可用,但是价值观同事先预期不相一致,这属于缺少深入识别。
怎么做,才能够解决这些矛盾呢?让我们先来看一些地方的人才评鉴方法:一是靠大师举荐;二是靠小同行评价;三是靠日后实践鉴别。这三条都有一定道理与可行之处,但也都有一些难以避免的问题。比如大师推荐,一般都是出以公心的,可是有的也难免出于私心。法拉第被他的老师、著名科学家戴维所打压不准进入英国皇家学会,就是一例明证;比如同行评价,一般也是可以的。但是,如果遇到利益纠纷,同行乃是冤家。这次屠呦呦获得诺奖后,向诺奖评审委员会建议予以取消的就是屠呦呦的同行;比如实践检验,无疑也是对的。但是,检验需要一定的时间跨度,等时间足够了,人才可能已经垂垂老矣。
我们所处的时代已经是信息时代。信息时代又划分为三个阶段:计算机时代、互联网时代和大数据时代。大数据时代选择人才、评价人才,就是不要凭印象说话,不要凭经验说话,而要凭事实和数据说话。
正是从这样一个前所未有的角度,大数据日益成为一种识才利器。
精准识才的工作原理
人们一定要问,大数据识人凭的是怎样的技巧呢?根据我的认识,有三大技巧:
其一,全范围搜索,再优中择优。众所周知的诺奖获得者评选,有其专门的评审委员会,并且遵循一套严格保密的程序。但是,在斯德哥尔摩正式颁布获奖人员名单之前,有的机构就发出自己的判断信息了。这个机构所凭借的武器就是大数据。他们利用论文发表数量、论文被引用指数,就可以预先把获奖者猜测出来。汤森路透就是这样一家能够做出比较精确预判的公司。从2002年始至今,这家公司已经成功预测出38位顶尖科学家。去年,获得诺奖的11位自然科学家中,汤森路透准确预测出8位。
其二,察微而知著,探究其内心。三国时期魏国文官刘劭以察微知著而闻名。有一天,青年曹操拉住这位名噪一时的刘劭,非让他给自己品评一番不可。刘劭被他纠缠不过,就写下“治世之能臣,乱世之奸雄”十个大字。历史证明,刘劭的判断十分准确。
那么,刘劭是凭借什么得出如此令人惊叹的结论呢?笔者认为,他是从曹操的非结构性数据里找到了答案。如今,美国人研究的“科学入心法”,就是将这一套观察方法,运用于人才识别上,并且将其数据化。这种观察,并非通过语言,而是通过非语言信息。比如,说话声调的变化、眉毛是否上扬、眼睛如何转动、肌肉如何移动等等。这些行为,都是无意识中表现出来的,是用肉眼无法观察到的,而计算机却能够很容易追踪其变化。
有篇文章这样描述这一过程:某人打开视频网站,正在观看一则广告,禁不住流露出惊喜的表情。这时,计算机摄像头提示灯忽然闪了闪,这是什么意思?原来计算机是在做这样的事:对准那个人的眼睛定位,寻找嘴部水平中心线,xyz轴建模,测量他的眼轮匝肌、皱眉肌、颧大肌各块肌肉的位移,数据传回,数据库表情匹配,得出内心情绪判断。
所谓“科学入心”,就是这样一种原理。
其三,丰富大数据,聚焦意中人。现在的世界,到处布满了数据。有人把它形容为大数据飓风,有人把它描述为大数据洪流,也就是说,人们已经生活在数据海洋里了。这个海洋,是你我、大家共同制造出来的。比如你的手机,上面下载了不少软件。你自己感到实用、方便、免费,殊不知就在你获得这些好处的时候,你的大量信息都被它采撷而去了。如果商家要为你做出一幅素描画像,那将是轻而易举的事。你的形象由两部分数据组成:一部分是交易数据,包括你的消费水平、消费频次、购物生命周期;另一部分是交互数据,包括你的图片、你的习惯、你的行为,还有你在微博、论坛、论文里发表的观点,乃至你的出行记录。这样的图像素描,就为想要寻找你的人,提供了大量信息。
弄清了以上大数据的工作原理,就知道为什么它能够帮助我们寻到人才了。
当然,大数据找才,也有其弱点。比如,对于那些名气还不够大的人,对于因为需要保守技术机密而不宜张扬,包括公开发表论文的人才,非常可能被其忽视、埋没。这就是说,大数据也有其难以令人满意之处,但总归是目前相对科学、客观、有效的人才发现、识别方法。
数据分析咨询请扫描二维码
评估数据集成与共享效果 数据质量: 数据集成效果核心指标之一,可通过准确性、一致性、完整性和及时性衡量。对比前后数据以检 ...
2024-11-29指标数据在业务决策中扮演着至关重要的角色。通过构建和应用合理的指标体系,企业能够全面了解业务状况,识别问题,并制定优化策 ...
2024-11-29数据在现代社会扮演着至关重要的角色,而对数据的合理处理也变得愈发重要。数据退役后,必须谨慎对待,确保其中敏感信息不被泄露 ...
2024-11-29在推荐和评测数据应用工具时,我们需要根据不同的需求和场景来做出明智的选择。以下是基于证据的详细分析: Excel 作为入门级工 ...
2024-11-29在当今日益数字化的世界中,数据已经成为组织和个人不可或缺的资产。然而,数据的积累和应用也带来了诸多安全挑战,因此数据制度 ...
2024-11-29在当今信息爆炸的时代,数据已经被公认为企业的最宝贵资产之一。然而,要想充分发挥数据的潜力,建立健全的数据集成与共享文化至 ...
2024-11-29《Python数据分析极简入门》 第3节 9 Pandas 文本数据 importpandasaspd 1、cat() 拼接字符串 d= ...
2024-11-29定制化数据服务在当今数据驱动的世界中扮演着至关重要的角色。这种个性化解决方案不仅提高了企业的数据处理效率,还深刻影响了客 ...
2024-11-28在当今信息时代,数据成为各行各业中不可或缺的资产。然而,数据的真正价值取决于其质量,而数据元作为数据的基本组成部分,在数 ...
2024-11-28在当今信息爆炸的时代,数据被认为是企业成功的关键。然而,仅拥有数据是不够的;必须制定和执行一项坚实的数据战略,以确保数据 ...
2024-11-28数据战略评估的关键在于确保数据管理和应用项目的成功实施。通过建立业务案例、投资模型,并跟踪进度,旨在实现项目目标。这种评 ...
2024-11-28数据战略在客户关系管理(CRM)中扮演着关键角色,通过收集、分析和应用数据,企业能够更好地了解客户需求、提升客户体验,并制 ...
2024-11-28当谈及现代商业和管理中不可或缺的环节时,数据分析与决策支持无疑是其中的焦点。这一关键领域的核心在于通过数据驱动的方式帮助 ...
2024-11-28数据战略实施案例分析涉及数据战略制定、关键实施步骤和成功案例分享。以下案例展示不同企业如何利用数据战略优化运营和提升竞争 ...
2024-11-28数据生命周期管理(Data Lifecycle Management,DLM)是一项关键任务,涵盖了从数据产生到销毁的全过程。在当今数字化时代,数据 ...
2024-11-28数据应用对客户体验的提升 数据应用在提升客户体验方面扮演着关键角色,通过个性化服务、优化客户旅程、实时反馈与改进、增强客 ...
2024-11-28数据分析领域的发展为企业提供了前所未有的机会,同时也呈现出日益增长的挑战。在这个信息爆炸的时代,数据的管理和分析变得至关 ...
2024-11-28数据运维在现代企业中扮演着至关重要的角色,选用合适的工具可以大幅提升生产效率和数据管理质量。在数据运维领域,有很多工具可 ...
2024-11-28企业在制定和执行数据战略时,经常会遇到多种挑战。这些挑战涉及技术、组织、人才以及文化等多个方面,直接影响着数据驱动决策的 ...
2024-11-28数据战略评估是组织为了确定其数据资产价值、制定有效数据管理计划和提高业务绩效而进行的关键过程之一。在当今数字化时代,数据 ...
2024-11-28