构建大数据系统的前沿技术概述
第一部分存储模型之前,先抛两个问题:
1)这些存储的数据结构,主要是来优化什么操作的?
2)SSD对于这些存储结构有什么样的影响?
一. 存储模型--读和写的取舍
一个好的存储结构,我们希望的是更新数据快,查找特定的数据也快,最好占用空间还小,一般来说,这算得上是对存储的终极要求了。
终极要求,这东西一般都是YY,但是,加上一定的限制条件,在特定的时期,数据大爆炸之前,单机时代,B树这个结构,可以算得上是银弹。基本上所有的关系型数据库系统都采用这种结构。SqlServer和Oracle都采用B树,Mysql,Db2还有informix采用的B+树,
磁盘读数据和写数据的过程,1)移动磁头到对用的扇区,2)然后磁头接触磁道,写或者读数据,3)通过总线传输到内存或者寄存器。
磁头移动时间,十分之一秒的级别,读写的时间,按照普通磁盘,7200转的,差不多在百分之一秒级不到,还有一个耗时就是总线传输时间,这个基本可以忽略,在10的8次方分之秒。
另一个背景知识是,文件系统, 读写是有最小操作单位的块,每次I/O操作,都是整块操作。块大小,跟文件系统的格式有关,fat32,ext3/4等等,常见的块大小4096个字节,块大小可以调整,块,对应到物理的扇区。
通过上面的分析,有效的优化是降低磁头定位的次数;B树就是综合读写两方面的需求,提出的对磁头定位操作优化的结构。隐含的数据特征是:重查询,轻新增,并发写要求不高。总的数据量优先,单挑记录会被反复更新,这刚好就是单机时代的数据特征。在做关系型数据库表设计的时候,知道这点会比较有用。
B+树和B*树是B树的两种变形,B+树降低了中间节点的数据大小,同样的块大小,可以存储更多的数据,检索上更有效率,但是,实际数据读取上有妥协。B*树,相对于B数在节点的分裂,旋转,平衡方面有增强。
进入互联网时代,数据的特征有了变化,写多读少,数据具备热点时间。有效期之后的数据,就相当于传统数据库的归档。另外一个有利的变化,是内存变得很便宜,可以用足够低的成本hold住热点数据。这种前提下,顺序写做持久化,热点数据保持在内存中,并且在内存中进行排序,保证顺序写入的数据是有序的。
基于这样的思路,就有了LSM-Tree和COLA-Tree两种改进。区别在于LSM的MemTable保持固定大小,持久化数据的索引都有compaction阶段完成。COLA的思路,是Memtable就按照固定的逻辑完成索引更新。COLA里面是没有Memtable这个名称的。
基本上现存所有的NoSQL都是采用LSM-Tree的思路,除了TokuDB。
Cassandrda和LevelDB,需要特别提一下,他们两个在Compaction阶段的实现,是参考了COLA的做法的,sstable做了分层合并。COLA在层之间,还引入了分形树(Fractal Tree)的实现,改进索引性能,Cassandra和LevelDB是没有,单层上数据检索,还是采用的BloomFilter和二分法。
二.实时计算-精度和速度的权衡
纯粹从性能对比,COLA跟B树算是公平对决,数据如下:块大小4098字节
查询Cola比B树慢12倍,插入速度是B树的340倍。
LSM不具备可比性,更多靠cache命中的效率。
之前提到的问题,SSD的影响,这么看起来,SSD对B树和Toku的影响要比LSM大(只是相对的),这些算法,对于ssd来说,算法对性能的影响并不重要,比较重要的反而是,通过算法降低,flash的读写次数,达到延长ssd使用寿命和减少损坏率。
除了需要保存检索数据,还需要对数据进行计算,流计算,实时计算的框架,已经是大数据里面到处可见,Storm,Spark Stream等等,这些流行框架更多是调度系统,真正的计算还需要自己来实现。
在我现在的实际工作中,常见的有点难度的计有exist是否存在,distinct count 去重计数,top n 等等在 window内部。
所有这些计算,对于内存都是很巨大的挑战。可行的做法,就是引入精度,接受概率。
这些做法,在数据挖掘的领域,已经是司空见惯的做法,比如关联规则挖掘的Apriori跟Fp-growth等都引入的概率的做法。
很多程序员其实也用过,一说就知道,Bloom Filter做去重,接受一定概率的误差,换来空间的减少,提升性能。
接下来介绍几个,我在实际工作中,用得比较多的方法,实际上是几个概念。
1)Bloom Filter
2)Sketching
3)基数估计
BF略过,大家都知道。Sketching,用于做频率估计,估算数据流中每个数据的出现次数。基本思路也跟BF差不多,通过互相独立的hash函数依次处理输入,接受一定程度的正负错判,估计值在一定概率内正确,这个概率可调整。这类方法的另一个优势是可以很容易实现分布式,能够合并。
Sketch有几个变种,basic sketch, counter sketch和counter min sketch,依次各有改进。
Bf和counter min sketch算是当前最优的top n的方法。Cms对于重复度高的效果较好,重复度不高了,有基于cms基础上的改进,counter-mean-min sketch。
上面在存储模型中间没有提到,cms还能够用在nosql的range query索引上,不追求精确度,在性能方面完爆B树。
基数估计也是类似的思路,用很少的空间,计算集合的势,常见的算法有Linear counter,LogLog counter两类,分别使用在重复情况比较明显和重复情况相对于总量来说较低
Redis在支持bitmap之后,在2.8.9之后,直接提供了hyperloglog的支持,每个 HyperLogLog 键只需要花费 12 KB 内存,就可以计算接近 2^64 个不同元素的基 数。线性的counter也可以直接利用bitmap实现。Hash函数的murmur是比较可以无脑使用的实现。
具体的算法描述,大家可以问百度,不细说了,知道有哪些可用场景就好。我们主要用在风险检测的参数计算方面。
三.分布式持久化-CAP的妥协
对于分布式持久化的内容,也扯两句,我个人很喜欢Dynamo模型的对称结构,BigTable的管理节点实在是不美观。也就是zk和gossip+vector clock的战争,这种选择也就决定了各自在CAP和ACID中间能够达到的水平。
四.日志为中心的基础架构设计
ArchSummit全球架构师峰会 上我也推荐过kafka的作者写的文章,在推荐一次,个人觉得每一个做分布式系统设计的架构师,都应该读几遍才好。
给大家看这样一个图
苏宁现在整体数据系统建设思路,差不多就是这样,通过日志,串行所有操作,避免冲突。基本上满足异地多活的需求。中间过程,分实时计算,批量计算并且在服务层合并数据。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31