O2O需要的不是Hadoop 而是大数据
如题,但希望网友不要误解,这里的需要是指大数据技术在目前的发展进程中,是不会阻碍到O2O的应用,而对于O2O来说,最难的莫过于数据的来源。这想必也是众多掘金电商、O2O的厂商们的苦恼,更是未来抢占O2O市场先机的一个分水岭。
其实电商领域的O2O并不是一个新鲜的词汇,早在团购网站兴起时就已经开始出现。百度百科对于O2O的定义为Online To Offline(在线离线/线上到线下),是指将线下的商务机会与互联网结合,让互联网成为线下交易的前台,这个概念最早来源于美国。在最近公布的《流通蓝皮书:中国商业发展报告(2013~2014)》中指出,中国电子商务进入O2O时代。
以前,电子商务与实体经济的融合主要体现在产品融合方面,即在电子商务平台上交易的产品来源于实体,但在运营上二者相互独立。但是走进O2O时代,对于电子商务的运营似乎就有一些差别,实体与网络又多了一份联系,需要线上线下的高度结合。
新的方式,自然更需要新的模式。线上管理线下,无疑加大了存储量,不仅包括线上存储,实体店的每天客单价、进店人流量,来源渠道等等都需要记录存储。加以运用数据分析,用数据说话。
在O2O模式中,通过线上的“O” 积累口碑、提高品牌曝光并吸引精准客户群体的关注,最终为线下实体店导入客流;线下的“O”提供完善的售前售中和售后服务,大数据成为串联这两个“O”,实现O2O营销闭环的关键。
立足中国本土,不难发现,2013年O2O进入高速发展阶段,众多商家都齐齐涌入。微信推出“扫购”功能,用户可以线下扫码、线上购买。苏宁推出“附近苏宁”功能,用户可在线上查找门店,关注促销信息,线下体验和购买。而天猫则将广告和促销环节向线下渗透,线下宣传“双十一”活动、线上下单。
百分点科技公司一景
在记者最近采访的国内大数据服务商百分点科技公司,也看了O2O未来的发展潜力,毕竟在中国线下的零售占据总体的90%,而线上购买还不到10%。为此,百分点成立O2O子公司“信柏科技”,定位于O2O大数据,协助传统零售业的线下数据挖掘和分析。作为一家大数据初创公司,百分点一直专注于互联网企业的消费者偏好数据,并推出了大数据引擎。在电商、教育、旅游、媒体、金融、证券、制造业等多个领域都有涉及。
达到千家的合作伙伴,也就意味着千个商家的数据量,这也是促进百分点在大数据技术层面上的不断发展。百分点运营副总裁韩志勇告诉记者其后台的数据处理技术也是经历了四个阶段的,它所构建的大数据处理平台包含了数据存储和数据处理两个层次。
底层的基础架构自然少不了hadoop,但它也只是其中的一个组件,这包括分布式文件系统(HadoopHDFS)、分布式SQL数据库(MySQL)、分布式NoSQL数据库(Redis、MongoDB、HBase)、分布式消息队列(ApacheKafka)、分布式搜索引擎(ApacheSolr)以及必不可少的ApacheZookeeper。
其中,流式实时计算帮助客户获得肉眼无感知的性能。如此架构的数据处理,相信可以适用不论是B2B、B2C还是O2O等等各种电商模式,所以O2O所需求的大数据处理技术并非需要重新架构,它所面对的技术性挑战也并非是其发展的最大阻滞。
百分点科技公司董事长苏萌表示,O2O面临的最大挑战应该是数据的收集,因为目前线下搜集的数据可用性并不高。而百分点所做的是对中国消费者用户的习惯的研究,包括用户的购买时间、购买习惯和可接受的价格,基于这样的先天优势,可在一定程度上帮助到线下零售。
但这还是远远不够的,线下零售还需要寻求一种方式,这在中国可能还是起步阶段。而在美国,很早就已经注意到对于实体销售的数据收集工作。当你去逛沃尔玛,它所给你配备的购物车就会跟踪你的行为轨迹并记录,沿着人们行走的轨迹,不仅可以知道用户的购物习惯,也在一定程度上方面超市的货架、物品摆放的布局。当然现在随着WIFI的普及似乎也可以轻松做到,当你超市内部网络时,你消费者行为轨迹也就这样轻松获取了。
在中国O2O前景的规划设想中,苏萌举例,未来的购物中心,单单凭借线下销售已经不能满足消费者,但是人们的需求又不能只是在网上满足,这就需要一个结合点。基于以前所收集的数据模型、算法,以及移动端的引导,吸引了前来购物中心的人流,再运用数据分析将他们精准的分流和引导。
据悉阿里巴巴在今年所投入的O2O的领域中,也是相同的想法。这是信柏科技对于O2O市场的构想蓝图,但具体的实施策略,苏萌并未透漏。以一见百,看中O2O大数据市场的当然不止百分点,这也是更多觊觎这块大蛋糕的厂商们在寻求的突破口。
数据分析咨询请扫描二维码
数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20统计学专业的就业方向和前景非常广泛且充满机遇。随着大数据、人工智能等技术的快速发展,统计学的重要性进一步凸显,相关人才的 ...
2024-11-20