大数据价值堪比石油 何以玩转数据管理
大数据时代的到来,使得数据成为企业业务的一项重要战略资产。对于企业而言,成为数据驱动型企业已经成为一种必然的趋势。
日前,Commvault联合IDC针对数据管理进行了一次调研,该调查主要分析亚太地区企业内部的数据孤岛如何制约企业做出明智决策,从而导致成本攀升的问题,以便能够更好地了解企业如何将数据用作战略资产,同时降低相关成本和风险。IDC的调查数据显示:74%的企业认为,数据对于企业来说具有战略意义,企业可以充分利用数据做出更优的决策;只有5%的企业表示,数据对它们来说不具有战略意义。
Commvault中国区技术总监蔡报永在解读此次调研时表示:“绝大部分CIO认为数据对他们企业将来长期发展具有战略性意义。以数据来驱动企业的生产发展,通常这样的企业比其它的企业在市场上具有更大的竞争力,其能够更快的做出决策,能够拥有更多地核心的竞争力而领先于竞争对手,其利润也相对更丰厚。”
一体化平台或成新引擎?
如今,越来越多的数据被收集,但却并没有得到足够的分析。特别是在中国,所收集数据的分析率甚至不足50%。“整个数据的收集和被分析利用趋势是比较弱的,还有很大的增长空间。”蔡报永说道。而在对数据管理策略及流程的成熟度方面,63%的中国企业(亚太地区为40%)称他们的数据管理策略 ,特别是数据的备份、恢复、数据保护和分析等仍是在部门级别完成,对于整个业务单元或企业的整体策略也因此缺失。蔡报永表示:对于企业来说,做好数据管理的驱动力,通过管理数据去做公司规划,甚至数据更多的留住客户、赢得客户、产生更多的业务成为企业对数据管理的需求。
然而在这一过程中,数据孤岛所带来的安全风险成为部门级数据管理信息孤岛带来的首要风险。“很多亚太区CIO已经意识到了这个问题。现在他们也正在致力于做一体化整体的数据管理模式,就是想把原来分散的、部门管理模式进行统一。”蔡报永说道。
而随着云的不断兴起于落地,在企业谈及第三方平台或是将数据迁移到云中时,绝大部分客户都认为安全访问数据对他们而言时最大的挑战。蔡报永表示,用户在选择备份及恢复解决方案时,所考虑的关键因素包括:管理和保护所有类别数据的能力;能够通过单一平台保护、管理和访问所有数据的端到端解决方案;可扩展性;易用性;以及不影响性能等方面。
其中,端到端的一体化平台成为重要的候选目标。这样一体化的平台究竟为何受客户青睐?蔡报永认为:一是因为一体化的平台能够非常有效快速地做电子查找;二是是其能够对于本身数据起到保护作用,防止其丢失;第三,一体化的平台还可以降低它的总体拥有成本。此外,优化部门间协作、为决策提供更完备可靠的信息、更加高效和可靠的灾难恢复机制也是一体化平台的主要优势所在。
对此蔡报永表示:“我们认为,灾数据管理是提供灾难恢复机制最基本的部分,因为一旦所有的物理故障出现的时候,你可能可以通过复制和镜像来完成数据管理。但是当出现逻辑故障的时候,一定通过数据恢复或者是数据灾难恢复这种机制来实现的。所以要充分的利用一体化平台保护好数据,为你的灾备体系来服务。”
而归结到最终,在数据管理领域中,用户选择第三方平台的意义究竟何在?据本次调查的结果显示:亚太区的CIO认为利用第三方平台主要是为了提高运营效率、节约成本和拓展市场。“IT本来就是支持业务部门驱动他来拓展市场。对于整个数据管理趋势而言,将来一个企业是否把数据看成战略资产、是否充分利用了战略资产,就必须做到节约公司成本、提高生产率,并且在进行大数据分析之后能够拓展出新的市场。这也是我们所认为的将来一体化的数据管理软件能够为这个企业所提供的三大优势。”蔡报永说道。
如何破解“数据孤岛”难题?
与此同时,我们也看到,在向IDC提出的“第三平台”转型期间,数据孤岛问题尤为突出。信息孤岛的问题由来以久。以前,IT的部署方式是为每个应用单独部署一套IT系统,包括计算、存储、网络等。随着应用不断增加,不同应用系统之间难以进行沟通,数据也无法共享,一个个的信息孤岛就此产生。信息孤岛的弊端十分明显:第一,产生安全风险,IDC的调查数据显示,安全风险被企业视为信息孤岛带来的首要风险;第二,成本的增加;第三,降低生产效率,不易实现分工协作。
为了做出明智的商业决策,第三平台上的企业更加注重数据的整体观。第三平台为企业带来了巨大机遇,让他们能够推动未来的业务增长和创新,并降低部门级数据管理的风险。
据蔡报永介绍,针对当前企业在数据管理方面的情况,Commvault也推出了相关的产品及服务。目前在中国Commvault专业服务部提供了“数据管理成熟度评估”的服务;在大数据分析方面,Commvault的引擎可以做到对机器上面的日志做运维分析;而目前,用于IT运维的自动化分析的Simpana R2版本也已经推出。此外,在今年上半年,Commvault还推出了几个产品,利用云帮助用户建立容灾系统。“Commvault会向企业提供统一的一体化平台及专业的容灾服务,从而将企业的数据和云有机地结合起来,在这方面Commvault都可以做到很好的支持。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 7 Pandas分组聚合 分组聚合(group by)顾名思义就是分2步: 先分组:根据某列数据的值进行 ...
2024-11-25数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21