
大数据与风险社会的危机管理创新
德国社会学家乌尔里希·贝克1986年在《风险社会》一书中,首次提出风险社会的概念。人们普遍认为,它很好地描述和分析了当代社会的结构特征,为理解当下中国转型时期的社会风险,应对公共危机,提供了有益思路。大数据开启了一场新的数据技术革命,大数据技术的引入,可以重构传统的风险管理体制,再造危机管理流程,变革和创新政府管理思维。
社会转型与社会风险
根据贝克的理解,随着现代化的推进、科技的发展及经济全球化进程的加速,人类进入了一个风险频发的风险社会。虽然风险古已有之,但现代风险具有整体性、不可感知性、不确定性、全球性、自反性等传统风险所不具备的特性,它从根本上改变了工业社会的运行逻辑、社会动力和基本结构,使人类进行了一场“从短缺社会的财富分配逻辑向晚期现代性的风险分配逻辑的转换”。现代科技在推动社会发展的同时,也带来大量潜在的风险,这种“自反性”现代化的结果是,科技和现代化发展得越快、越成功,风险便越多、越突出。
此外,风险社会的另一个后果,便是社会的“个体化”。人们不再以阶级、家庭等制度性标准作为行动参照,而完全以自身作为决策主体;人们也不再以阶级地位,确定某人的家庭地位、观点、关系、社会、政治与认同。这是社会结构的巨大的变迁。在传统社会,个体遭遇风险,可被当成不由个体负责的事件;而在风险社会,则被视为个体的失败案例。这就导致风险在数量上增加,类型上更加复杂化,因为不同的人会遇到性质和形式不同的风险和罪责归因。
与此相关,风险社会的另两个结构性变化,是工作场所的多元化和工作的灵活化。传统单位里终身的全职工作,转变为充满风险的,多样、灵活和分散的就业体系,这带来了普遍的就业不安全感,并对现行的劳动保障体制及法律制度的合理性提出了质疑,给社会发展和政府管理带来了威胁与挑战。
风险社会与危机管理
经过30多年的高速发展,当代中国正处于社会转型和危机高发的风险社会阶段。现阶段我国不仅受到环境与资源的巨大制约,而且还需在尽可能短的时间内完成发达国家相当长时期内完成的社会变迁和结构转型。这种快速转型,可能导致社会结构出现断裂,带来频繁的社会危机和剧烈的社会震荡。20世纪80年代,拉美国家出现的“拉美陷阱”,原因正在于此。
一般而言,现代风险社会具有三大特征:风险的人化、制度化、普遍性。当前,我国正处于全球风险、社会转型风险混合叠加的高风险时期——由传统社会向现代社会转型,既存在机遇,也面临风险;经济全球化加速了全球信息与物质的流动,将我国裹入全球风险之中。近年来,源自国内外的一系列公共危机,清晰地表明我国业已步入高风险社会。
2003年非典以来,我国“一案三制”的应急管理架构,“统一领导、综合协调、分类管理、分级负责、属地管理为主”的危机管理体制,得以初步成形,并在若干重大危机应对中凸显优势。然而,随着经济、社会的急剧转型,这种集中资源的“拳头式”危机管理体制,问题和缺陷也日渐显现。例如,这种危机管理体制的理论预设是危机的“非常态”,将危机视为偶然事件,侧重于事后的应急处置,忽视前期预警和全流程监控,致使本可早期预防的危机频繁发生。同时,脱胎于传统官僚体制的政府危机管理体系立足危机“已然存在”的假设之上,依靠权力分工、责任认定和制度化的应急手段予以消除,但随着风险社会的来临,风险来源不断增多,变异性、扩散性日益增强,仅对危机进行局部改良已难以从根本上解决问题。因此,必须引进新的技术与方法,创新危机管理,推进治理体系和治理能力的现代化。
大数据与危机管理创新
大数据技术及管理模式的引入,能有效重塑危机管理体制的理念、机制和流程,提高危机管理的科学性和可预见性,促进现有体制结构性问题的解决。
重塑管理理念。风险社会的危机事件具有高度的复杂性、普遍性、衍生性和利益关联性。必须突破现有理念中“重应对、轻管理”的误区和“重权力、轻技术”的倾向,主动运用大数据的挖掘、分析、预测和流程整合能力,对危机生命周期的全程进行流程管理,实现从单一的事件应对向全流程管理的理念转变。避免聚焦于应对环节,忽视监测预防、缓解、评价、学习、反思等重要步骤。避免一次次成功的事件应对过后,处置能力和应急管理水平毫无长进,一事过后同类问题反复发生。大数据最大的价值在于预测,它能实现有预见性的管理。
变革管理体制。现代危机具有很强的跨领域性、衍生性、危害的全社会性,在此背景下,现行体制纵向分工的惯性与现代危机管理横向整合要求之间存在严重的功能性冲突和结构性矛盾,一个部门负责一种危机的模式也已无法适应当代危机管理的需要。而大数据技术及相关管理模式,能为现有体制及专业分工所致的信息壁垒提供很好的解决方法,原因在于管理流程中产生的数据流,只遵循数据本身的性质和管理的要求,而不考虑专业分工区隔。
再造管理流程。即依据危机管理数据流的传播方向而非专业分工来构建和再造管理流程,使危机管理体制围绕数据流形成相应的机构、团队和人员,有效提高管理流程整体的运行效能。
构建数据分享系统。大数据技术获取的全样本数据,是现代危机管理的基础。在创新管理体制的过程中,有必要从国家层面打破部门垄断和专业区隔,构建政府内部无缝衔接的大数据危机管理系统,为联合开展危机管理提供共享的管理数据网络,实现以大数据分析决策为核心的整合式危机管理效益的最大化。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师:开启数据职业发展新征程 在数据成为核心生产要素的今天,数据分析师的职业价值愈发凸显。CDA(Certified D ...
2025-07-03从招聘要求看数据分析师的能力素养与职业发展 在数字化浪潮席卷全球的当下,数据已成为企业的核心资产,数据分析师岗位也随 ...
2025-07-03Power BI 中如何控制过滤器选择项目数并在超限时报错 引言 在使用 Power BI 进行数据可视化和分析的过程中,对过滤器的有 ...
2025-07-03把握 CDA 考试时间,开启数据分析职业之路 在数字化转型的时代浪潮下,数据已成为企业决策的核心驱动力。CDA(Certified Da ...
2025-07-02CDA 证书:银行招聘中的 “黄金通行证” 在金融科技飞速发展的当下,银行正加速向数字化、智能化转型,海量数据成为银行精准 ...
2025-07-02探索最优回归方程:数据背后的精准预测密码 在数据分析和统计学的广阔领域中,回归分析是揭示变量之间关系的重要工具,而回 ...
2025-07-02CDA 数据分析师报考条件全解析:开启数据洞察之旅 在当今数字化浪潮席卷全球的时代,数据已成为企业乃至整个社会发展的核心驱 ...
2025-07-01深入解析 SQL 中 CASE 语句条件的执行顺序 在 SQL 编程领域,CASE语句是实现条件逻辑判断、数据转换与分类的重要工 ...
2025-07-01SPSS 中计算三个变量交集的详细指南 在数据分析领域,挖掘变量之间的潜在关系是获取有价值信息的关键步骤。当我们需要探究 ...
2025-07-01CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25