教育大数据可分四类,最难获取的数据是什么?
教育大数据有四类,第一类是教学资源类大数据,比如说张馆长管教育资源,统计每个学校有多少老师去用就是大数据。第二类是教育教学管理大数据,上海,全国学习管理系统都已经做好了。第三类是教与学行为大数据,第四类是教育教学评估大数据。比如说管理类的数据相对比较方便,全国中小学习管理系统比较方便,尽管比较难。但是相对比较方便,从资源来谈也比较方便,比如说上海学习网,上面有1万5千个课程,摄影什么插花都有的,上面学的比较多。
当然,管理类其他一些数据应用,现在也有,我举一个例子,上海实验幼儿园,他们有一个小的系统,这个系统只要学生走进校门就可以捕捉到这个学生有没有热度,如果有热度的话,马上老师把他留下来进行体温测量,如果数据真的是有问题,让家长带回来,有时候还好留在教室。小孩还没有到的教室,教室的老师收到一个信息,你们班级马上来一个孩子,这个孩子是有热度的,所以会给他一个小的空间,吃中饭的时候不吃海鲜,是吃素的。大家可以想象,一两年,这些数据累计起来是非常可观的。
最难获取的教育数据是教学行为的评估。
从学习的数据来看,我觉得有三种基本方法,第一种是大规模教学评估,右边那个图就是讲数据分析,我们看到是最后,它本身是一个大数据分析,包括上海的绿色指标,已经连续很多年的测试,这个数据也是非常可观,很可惜没有公开,应该有一种方法可以公开。包括高考(精品课),会考,这么多的考题和考生,实际上数据也是非常可观,包括一些入学面谈,学校入学的时候。
这个学校是全中国唯一的学校,这个学校市教委允许他进行一些筛选,他筛选的方法实际上用计算机,大数据的方法来处理,已经很多年,到某一个时候效益就会呈现出来。
第二是大家比较关注的,在学习平台上开展教与学,那么比如说电子教科书应用,只要有电子教科书,就会产生数据,只要有这个平台,包括阅读平台,包括MOOC,包括可汗学院,也提供了很多有意思的数据,包括51TALK,包括DIS数字化实验,包括每次做作业和测试。
51TALK每天有几百万人在上面一对一和老外学习英语(精品课),里面学的过程中,每天都学,学25分钟,15块人民币,很多小孩在里面学习。但是它背后产生大量的数据。
第三个方法就是综合活动即使数据留存,比如说场馆一卡通,现在还有一些做法,比如说卢湾一种新云课桌,包括平南小学体育课手环,上体育课手环带在身上,老师可以看到学生各个反应。
上海市电化教育馆做的中小学专题教育网,上面有几百门的教育课程,现在区县的做的好是闵行区,它做了中小学学生信息管理系统,到现在已经有四五年,这个数据已经产生很好的效益,对学校的评估不再是拍脑袋,有一些具体的数据。
我们的教育有很多的数据已经在开始做了,当然有一个问题,为什么教育信息化成功案例还是很小的。我告诉大家,最主要是教育太复杂,教育用数据的过程还是时间短,说白了大数据就是四五年的时间。大数据的本质是用机器的方法用数据提炼信息,预盼未来的可能性,但是教育太复杂了。
第一,与学习相关的变量太多,可以说是无法穷尽,但如果设一些最少数的变量,往往没有用。比如说如果大数据采集学习的时间和内容,我希望预判这个孩子学习的结果,最后的结果是有相关性,指导作用非常有限。
一个人的学习,大家知道不但和荷尔蒙有关,学习和人的内分泌和积极度有关系,今天情绪很差,内分泌系统不好。教育关联因素和教师有关,班级有关,家庭有关,同桌有关,经济都有关系。我作为一个老师对一个孩子进行教学,这个孩子放在个班级里面,或者那个班级会产生很大不一样。
第二,变量越多,告诉大家问题会越多,最终噪声会掩盖真相。一堂课就会有无数的数据,一个人一堂课上都有无数的数据,各种小动作对教育来说很大。也许一个孩子的成绩好坏,不是由主要关注数据决定,而且是一个非常小的因素起最主要的决定。
第三,越个性需要越精准,但是越精准的东西越透明。比如说淘宝买东西,至少要告诉地址,或者手机号码,但是中间因为有这个精准的服务,有个性化的服务,就会产生很多安全的问题,这就很难解决教育伦理的问题。
一个孩子进步不是完全是按照老师的安排来进入学习,如果一个孩子因为做了一些你不允许他做的事情,却永远牢记的话是很不好的。
第四,人的未来并不全部是由过去决定的,大数据抽取都是过去,用大数据演绎将来,这个不一定对的。数据本身如果也成为未来因素的时候,未来不再依据数据来演绎,数据会变成一个诱发的因素,比如说预测大坝会坏掉,或者预测一个人行为的变化。
教育判断而言要搞清楚几个问题,大数据作为强大的技术和潜在丰富的资源,对教育来说是很重要的,但是对判断它的价值我怎么用很重要。
华东师范大学做了一个测试,测试好了以后,告诉其中一半人是天才,告诉另外一半人有点问题,结果过了几年,告诉是天才的孩子表现非常优秀,而说笨蛋的孩子表现平平。所以大数据不要成为一个证明。
大数据公司不是迎合的现在的教育,而是按照未来教育方法构筑一个新的学校教育组织方式;数据很重要,但是有比数据更加重要是什么?就是教育过程本身。只有有意义的活动才会产生有意义的数据,数据创作不出经历,经历是可以创造出数据的;大数据技术是科学,但在教育应用大数据却是一项艺术,要把握精准和模糊的度。比如说招生,数据很有用,但千万不能演变成加权的绝对分值,并以此为唯一标尺,但依旧是一个参考。
数据分析咨询请扫描二维码
在当今数字化时代,数据已成为推动经济和技术发展的关键因素。企业和机构对数据科学与大数据专业人才的需求急剧增长。该领域涵盖 ...
2024-11-16金融数学是一门充满挑战和机遇的专业,它将数学、统计学和金融学的知识有机结合,旨在培养能够运用数学和统计方法解决复杂金融市 ...
2024-11-16在信息时代的浪潮中,大数据已成为推动创新的重要力量。无论是在商业、医疗、金融,还是在日常生活中,大数据扮演的角色都愈发举 ...
2024-11-16在快速演变的数字时代,数据分析已成为多个行业的核心驱动力。无论你是刚刚踏入数据分析领域,还是寻求进一步发展的专业人士,理 ...
2024-11-15Python作为一种通用编程语言,以其简单易学、功能强大等特点,成为众多领域的核心技术驱动者。无论是初学者还是有经验的编程人员 ...
2024-11-15在当今数据驱动的世界中,数据分析已成为许多行业的基础。无论是商业决策,产品开发,还是市场策略优化,数据分析都扮演着至关重 ...
2024-11-15数据分析作为现代商业和研究领域不可或缺的一部分,吸引了越来越多的初学者。然而,自学数据分析的过程中,初学者常常会遇到许多 ...
2024-11-15在当今的数据驱动世界中,机器学习方法在数据挖掘与分析中扮演着核心角色。这些方法通过从数据中学习模式和规律来构建模型,实现 ...
2024-11-15随着数据在各个行业的重要性日益增加,数据分析师在商业和技术领域的角色变得至关重要。其核心职责之一便是通过数据可视化,将复 ...
2024-11-15数据分析师的职责不仅仅局限于解析数据和得出结论,更在于将这些复杂的信息转换为清晰、易懂且具有影响力的沟通。良好的沟通能力 ...
2024-11-15数字化转型是企业提升竞争力和实现可持续发展的关键路径。面对快速变化的市场环境,以及技术的飞速发展,企业在数字化转型过程中 ...
2024-11-15CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13爬虫技术在数据分析中扮演着至关重要的角色,其主要作用体现在以下几个方面: 数据收集:爬虫能够自动化地从互联网上抓取大量数 ...
2024-11-13在数据分析中,数据可视化是一种将复杂数据转化为图表、图形或其他可视形式的技术,旨在通过直观的方式帮助人们理解数据的含义与 ...
2024-11-13