
教育大数据可分四类,最难获取的数据是什么?
教育大数据有四类,第一类是教学资源类大数据,比如说张馆长管教育资源,统计每个学校有多少老师去用就是大数据。第二类是教育教学管理大数据,上海,全国学习管理系统都已经做好了。第三类是教与学行为大数据,第四类是教育教学评估大数据。比如说管理类的数据相对比较方便,全国中小学习管理系统比较方便,尽管比较难。但是相对比较方便,从资源来谈也比较方便,比如说上海学习网,上面有1万5千个课程,摄影什么插花都有的,上面学的比较多。
当然,管理类其他一些数据应用,现在也有,我举一个例子,上海实验幼儿园,他们有一个小的系统,这个系统只要学生走进校门就可以捕捉到这个学生有没有热度,如果有热度的话,马上老师把他留下来进行体温测量,如果数据真的是有问题,让家长带回来,有时候还好留在教室。小孩还没有到的教室,教室的老师收到一个信息,你们班级马上来一个孩子,这个孩子是有热度的,所以会给他一个小的空间,吃中饭的时候不吃海鲜,是吃素的。大家可以想象,一两年,这些数据累计起来是非常可观的。
最难获取的教育数据是教学行为的评估。
从学习的数据来看,我觉得有三种基本方法,第一种是大规模教学评估,右边那个图就是讲数据分析,我们看到是最后,它本身是一个大数据分析,包括上海的绿色指标,已经连续很多年的测试,这个数据也是非常可观,很可惜没有公开,应该有一种方法可以公开。包括高考(精品课),会考,这么多的考题和考生,实际上数据也是非常可观,包括一些入学面谈,学校入学的时候。
这个学校是全中国唯一的学校,这个学校市教委允许他进行一些筛选,他筛选的方法实际上用计算机,大数据的方法来处理,已经很多年,到某一个时候效益就会呈现出来。
第二是大家比较关注的,在学习平台上开展教与学,那么比如说电子教科书应用,只要有电子教科书,就会产生数据,只要有这个平台,包括阅读平台,包括MOOC,包括可汗学院,也提供了很多有意思的数据,包括51TALK,包括DIS数字化实验,包括每次做作业和测试。
51TALK每天有几百万人在上面一对一和老外学习英语(精品课),里面学的过程中,每天都学,学25分钟,15块人民币,很多小孩在里面学习。但是它背后产生大量的数据。
第三个方法就是综合活动即使数据留存,比如说场馆一卡通,现在还有一些做法,比如说卢湾一种新云课桌,包括平南小学体育课手环,上体育课手环带在身上,老师可以看到学生各个反应。
上海市电化教育馆做的中小学专题教育网,上面有几百门的教育课程,现在区县的做的好是闵行区,它做了中小学学生信息管理系统,到现在已经有四五年,这个数据已经产生很好的效益,对学校的评估不再是拍脑袋,有一些具体的数据。
我们的教育有很多的数据已经在开始做了,当然有一个问题,为什么教育信息化成功案例还是很小的。我告诉大家,最主要是教育太复杂,教育用数据的过程还是时间短,说白了大数据就是四五年的时间。大数据的本质是用机器的方法用数据提炼信息,预盼未来的可能性,但是教育太复杂了。
第一,与学习相关的变量太多,可以说是无法穷尽,但如果设一些最少数的变量,往往没有用。比如说如果大数据采集学习的时间和内容,我希望预判这个孩子学习的结果,最后的结果是有相关性,指导作用非常有限。
一个人的学习,大家知道不但和荷尔蒙有关,学习和人的内分泌和积极度有关系,今天情绪很差,内分泌系统不好。教育关联因素和教师有关,班级有关,家庭有关,同桌有关,经济都有关系。我作为一个老师对一个孩子进行教学,这个孩子放在个班级里面,或者那个班级会产生很大不一样。
第二,变量越多,告诉大家问题会越多,最终噪声会掩盖真相。一堂课就会有无数的数据,一个人一堂课上都有无数的数据,各种小动作对教育来说很大。也许一个孩子的成绩好坏,不是由主要关注数据决定,而且是一个非常小的因素起最主要的决定。
第三,越个性需要越精准,但是越精准的东西越透明。比如说淘宝买东西,至少要告诉地址,或者手机号码,但是中间因为有这个精准的服务,有个性化的服务,就会产生很多安全的问题,这就很难解决教育伦理的问题。
一个孩子进步不是完全是按照老师的安排来进入学习,如果一个孩子因为做了一些你不允许他做的事情,却永远牢记的话是很不好的。
第四,人的未来并不全部是由过去决定的,大数据抽取都是过去,用大数据演绎将来,这个不一定对的。数据本身如果也成为未来因素的时候,未来不再依据数据来演绎,数据会变成一个诱发的因素,比如说预测大坝会坏掉,或者预测一个人行为的变化。
教育判断而言要搞清楚几个问题,大数据作为强大的技术和潜在丰富的资源,对教育来说是很重要的,但是对判断它的价值我怎么用很重要。
华东师范大学做了一个测试,测试好了以后,告诉其中一半人是天才,告诉另外一半人有点问题,结果过了几年,告诉是天才的孩子表现非常优秀,而说笨蛋的孩子表现平平。所以大数据不要成为一个证明。
大数据公司不是迎合的现在的教育,而是按照未来教育方法构筑一个新的学校教育组织方式;数据很重要,但是有比数据更加重要是什么?就是教育过程本身。只有有意义的活动才会产生有意义的数据,数据创作不出经历,经历是可以创造出数据的;大数据技术是科学,但在教育应用大数据却是一项艺术,要把握精准和模糊的度。比如说招生,数据很有用,但千万不能演变成加权的绝对分值,并以此为唯一标尺,但依旧是一个参考。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08