
大数据教你如何让大忙人及时回复邮件
“我每天都收到成百上千封邮件,大多数邮件都很重要,我却没有精力一一回复。”在线视频学习平台One Month的联合创始人和首席执行官Mattan Griffel表示,要想让那些每天被邮件轰炸的大忙人也能及时回复你的邮件,也是需要技巧的。
网上教人们如何写邮件的建议不少,但大多还没有数据做支撑。最近,邮件效率服务商Boomerang通过分析5300多万封邮件数据,找出了一些影响邮件回复率的窍门。总结起来就是两大点,方便他人及勾起兴趣。
首先,不要让对方觉得回复你邮件是件耗时耗力的麻烦事。要缩短的就是对方阅读邮件内容的时间,其中就涉及内容的长度和阅读难度。
比如Mattan Griffel曾提出,缩短内容有助于提高回复率。“如果邮件只有两到三句话,收件人读起来会更轻松。如果一封邮件超过两段,收件人可能会过会儿再读,收到回复的时间也就拖长了。”此次Boomerang的研究也发现,一封英文邮件字数最好是50至125个单词之间,这时回复率将可能高于50%。
由于Boomerang统计的都是英文邮件篇幅。按照翻译时中文原稿的字数约为英文译稿的1.5倍,我们只能大概估算下,中文邮件最佳长度可能在75到188字之间。
当邮件长度超过2500个英文单词时,回复率就低于35%了。如果想发长篇大论,最好以附件形式发送;另一方面,当邮件长度低于50个单词时,邮件回复率也会迅速降低,一封只有25个单词的邮件,与一封2500词长的邮件一样只有44%的得到回应机率;而如果邮件只有标题没有内容,得到回应的机会更小,只有 11%。
字数要求同样还体现在邮件主题上。数据显示,不包括自带的“转发”字眼时,只有3到4个英文单词的主题回复率最高。标题越长,得到回应的机会越小。当然,主题也是不能为空的,通常没有标题的邮件回复概率只有 14%。
除了控制字数,此次研究最大发现之一就是,电子邮件的阅读难度也会影响回复率。像一个小学3年级学生一样写作时效果最好。
阅读难度越大或者废话越多的内容越容易耗费对方的时间,从而降低对方立刻回应的意愿。按照大学程度阅读水平撰写的邮件中,得到反馈的只有39%,还不及充满语法错误的幼儿园水平邮件的反馈率。
即使是给知识能力水平高的人发送邮件,也应当尽量简化缩短语句,使用最简单明了的词汇。“要让收件人一目了然地知道自己到底需要做什么。”Mattan Griffel建议,如果不得不写一封非常冗长的邮件,那就把希望对方做的事情放在最前面。将段落拆成短句,将重要部分加粗或者斜体。“一两个句子成段好过一大段文字。”
当然,具体还是要根据邮件的写作背景来看。如果你是要与教授讨论你的博士论文细节,而他还将参与你的博士后奖学金评估,那还是要注意每个用词都尽可能专业;但如果你是写给一个足球迷来吐槽上次球队糟糕的表现,那就最好用三年级小学生都能看懂的大白话。
勾起收件人兴趣也是提高回复率的好方法。比如可以在邮件中向对方提出几个好问题。统计数据显示,当你在邮件中提出一到三个问题,邮件会有 50% 的概率得到回复。“当人们不忙的时候,让人产生好奇的邮件吸引他们;但当人们忙的时候,好奇心减弱,实用主题的邮件更多地被阅读。”宾夕法尼亚大学沃顿商学院教授Adam Grant表示。不过贪多可没什么好处,包含8个问题的邮件比只有3个问题的回复率要少20%。
另外,别以为客观讲事实才是最好的,其实影响回复率的关键因素还有邮件的表达情感和写作角度。Boomerang发现,邮件内容稍显积极或消极,是最容易得到回应的。此外,主观内容一般比客观内容的回复率要高 8%。
统计数据显示,相比于完全中性的邮件内容,轻微积极或者轻微消极的邮件内容,可以让回复率提高 10% 到 15%。比如投诉时适当的消极态度最容易获得商店经理的回应。当然情绪也不能过度,否则回复率也会随之降低。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10