
经济学家为何在大数据浪潮面前如此淡定
大数据如今被各行业追捧,但是有个现象还是值得注意的——在经济学领域,关于大数据应用的文章却不多。按理说,经济学是社会科学中最“科学”的一支,又以其“帝国主义”的霸权思想全方位侵入各个社科领域,为何在大数据浪潮面前如此淡定?不冲上去做一个弄潮儿?
小编个人觉得这大概与数据的特性有关,经济学使用数据的重点在于identification,而当前的大数据因为数据生产过程不透明及样本偏差等,难以做出学界认可的结果。
不明白的话,我们来看一个研究的例子,来说明为什么是这样:
之前某公共号推送了一篇文章,讲施新政、李宏彬和吴斌珍三位老师合作撰写的American Economic Review Papers and Proceedings论文“The Retirement Consumption Puzzle in China”,实证考察了中国居民的退休消费情况。文章的背景如下:
根据平滑消费理论,人们会调整一生各阶段的消费水平使之大致相当。然而,大量文献却发现人们的消费水平会在退休后发生大幅度下降,这与平滑消费理论发生了冲突。许多学者都试图从不同角度对此进行解释,本文作者也加入了这一行列。
在介绍作者思路之前,先来思考一下,如果我们用“大数据”要怎么做?
首先搞消费研究那得找万能的淘宝和京东啊,假设我们拿到了所有淘宝、京东的数据,知道大家都买买买了什么。然而这里有个问题,要研究的是消费水平是否会在退休后大幅度下降,退休的人都用这两个平台吗?!这里面临了大数据的问题一:所有的企业的用户数据和真实的人口都存在偏差,而且往往偏差很大。就拿相对最全的银行数据来说(金融方面),覆盖的也往往是本行的用户数,选择某一银行的人可能本身就有样本偏差,而且还不一定能覆盖其它如股票、信托等金融方式。
那么我们假设所有中国人都用淘宝和京东,这样是不是就可以了呢?
也不行。
因为你不是所有东西都在这上面买,我买个包子、买根葱,总不至于也上京东吧?
那我们假设全国菜市场也都联网了,我知道你都买了多少菜,多少鱼,总行了吧?
可能还是不行。
因为我如果根本就不去买,退休后在家里自己种菜呢?自己蒸馒头呢?而且这种现象恐怕不稀少吧?这都会造成数据的系统性偏差。
让我们来看看作者们是怎么分析数据中消费品类型的影响的:
在本文作者看来,现有研究的实证分析尚存在一些不足:首先,现有研究对消费的定义并不完善。消费中有一部分是与工作相关或者可以被家庭内部生产所替代。在考察退休前后消费是否满足平滑消费理论时,应该先将这一部分剔除。然而,大多数现有研究由于数据的局限而未能这么做。其次,现有研究面临内生性问题。退休与否是一个高度内生的决策变量,不考虑退休内生性的实证考察结果很有可能存在偏误,进而也无法明确得到退休与消费之间的因果联系。
作者们在处理这一研究问题的时候还是采用了“传统数据”,中国城市家庭调查数据(China's Urban Household Survey, UHS),对消费内容进行了细致的分解,分出了工作相关消费、可被家庭生产替代的消费及其他消费。
对于内生性的问题:本文利用中国的强制退休政策,借助断点回归策略(RD)有效处理了内生性问题。中国的很多单位都实行强制退休政策(主要是政府、公共部门、国有企业、集体企业,男性60岁、女性55岁),作者基于此比较考察了退休前后年龄段人群所在家庭的消费变化情况。
作者们得出的结论是:
退休确实会使家庭的非耐用品消费显著下降21个百分点。不过这一下降主要是由工作相关开支减少、食品消费由在外进行转变为在家进行所造成的。其中后者主要是由于家庭内部食品消费价格更加低廉,而且退休群体有充足的时间在家准备食品。在剔除了这两项之后,作者发现退休并未对其他非耐用品消费造成显著影响,即平滑消费理论针对其他非耐用消费品仍然成立。
当然,要知道UHS的数据可不是想拿就能拿到的,现在经济学研究高质量数据变得非常非常重要,而且只要数据质量够好,根本不需要复杂的模型。有研究表明,经济学主流期刊上面OLS仍然是使用最多的回归方式,而不是什么DID,RD,GMM。
结论
其实经济学家对数据是非常敏锐的,早已经不局限在传统的统计年鉴、普查数据,他们扒地方志及历史文献,用气象数据、遥感数据,现在也有非常多的研究开始写爬虫抓互联网数据。所以经济学家不是不用数据,也不是不用大量的数据,而是对“大数据”的使用持审慎的态度。
本文举的例子主要是想说明数据的选择与研究问题的需求密不可分,这一点不论数据"大小"。很多时候,研究人员并不能很好地了解拿到的大数据的产生方式,及可能存在的偏差,导致使用起来会比较盲目。特别地,互联网公司的业务变化速度非常快,算法脚本经常更新,用户结构性的变化也不小,这些对于外部研究者都是很难了解的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
剖析 CDA 数据分析师考试题型:解锁高效备考与答题策略 CDA(Certified Data Analyst)数据分析师考试作为衡量数据专业能力的 ...
2025-07-04SQL Server 字符串截取转日期:解锁数据处理的关键技能 在数据处理与分析工作中,数据格式的规范性是保证后续分析准确性的基础 ...
2025-07-04CDA 数据分析师视角:从数据迷雾中探寻商业真相 在数字化浪潮席卷全球的今天,数据已成为企业决策的核心驱动力,CDA(Certifie ...
2025-07-04CDA 数据分析师:开启数据职业发展新征程 在数据成为核心生产要素的今天,数据分析师的职业价值愈发凸显。CDA(Certified D ...
2025-07-03从招聘要求看数据分析师的能力素养与职业发展 在数字化浪潮席卷全球的当下,数据已成为企业的核心资产,数据分析师岗位也随 ...
2025-07-03Power BI 中如何控制过滤器选择项目数并在超限时报错 引言 在使用 Power BI 进行数据可视化和分析的过程中,对过滤器的有 ...
2025-07-03把握 CDA 考试时间,开启数据分析职业之路 在数字化转型的时代浪潮下,数据已成为企业决策的核心驱动力。CDA(Certified Da ...
2025-07-02CDA 证书:银行招聘中的 “黄金通行证” 在金融科技飞速发展的当下,银行正加速向数字化、智能化转型,海量数据成为银行精准 ...
2025-07-02探索最优回归方程:数据背后的精准预测密码 在数据分析和统计学的广阔领域中,回归分析是揭示变量之间关系的重要工具,而回 ...
2025-07-02CDA 数据分析师报考条件全解析:开启数据洞察之旅 在当今数字化浪潮席卷全球的时代,数据已成为企业乃至整个社会发展的核心驱 ...
2025-07-01深入解析 SQL 中 CASE 语句条件的执行顺序 在 SQL 编程领域,CASE语句是实现条件逻辑判断、数据转换与分类的重要工 ...
2025-07-01SPSS 中计算三个变量交集的详细指南 在数据分析领域,挖掘变量之间的潜在关系是获取有价值信息的关键步骤。当我们需要探究 ...
2025-07-01CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26