
Excel 绘图区分区设置不同背景色之柱形图
在Excel图表中,如对绘图区设置背景色,一般只能对整个绘图区设置同一种颜色、图案或图片为背景。但有时希望能对不同的分区设置不同的颜色作为背景,这时可以采取其他辅助手段实现这一目标,包括添加辅助的柱形图堆、积柱形图、堆积条形图,面积图等等。这些方法的基本思路是一样的,略举几例,可以自己试验创造。本篇介绍使用柱形图,进行横向或纵向分区设置绘图区背景色。
如有下表:
表-1
做成折线图,调整坐标轴刻度后,如下所示:
图-1
用辅助柱形图纵向设置分区背景色:
先准备按年,对绘图区设置颜色,由上图得知本例Y轴最大刻度为23,在原数据表格中添加一辅助系列数据,如下图所示:
表-2
选中图表,在右键菜单中选“选择数据”(或在Excel界面上“图表工具”-“设计”-“数据”-“选择数据”),在“图例项(系列)”中点击“添加”,准备将上述辅助数据行作为一个系列添加到图表中:
图-2
将AT107:AW107添加为系列2,水平(分类)轴标签选为AT105:AW105,如下图所示:
图-3
确定后,系列2也呈折线图,如下图所示:
图-4
在图表中选中系列2,在右键菜单上选“更改系列图表类型”,将系列2图表类型改变为柱形图:
图-5
选中系列2的柱形,在“设置数据点格式”-“系列选项”中将“分类间距”滑动游标拖至为0,即无间距,如下图所示:
图-6
逐个选中系列2的各个数据点,单独设置各个柱形的填充颜色,适当增加透明,如下图所示:
图-7
上述方法是增加一行辅助系列数据,设置其为柱形图,并使其分类之间间距为0。换言之,即以柱形的填充代之以背景色。这是一种替代方式,并非可以随意自定义设置绘图区背景色。这种方式的优点是设置比较方便,可以较快捷地达到分区的目的,其缺点是只能纵向分割,且颜色比较单调。
以辅助堆积柱形图横向分区设置绘图区背景色
在上面的柱形图方法中,各个分区是纵向设置颜色替代,如要横向分区可以使用堆积柱形图方式。
在上例表中,考虑到最大刻度是23,准备使用堆积柱形图,于是设计一列系列数据,使其堆积总和为23。如欲横向整齐地划分,可同样设置其他几列,如下图所示:
图-8
选中图表,在右键菜单中选“选择数据”(或在Excel界面上“图表工具”-“设计”-“数据”-“选择数据”),在“图例项(系列)”中点击“添加”,将上述辅助数据列AT108:AT111作为系列2添加到图表中,同样将辅助数据列AU108:AU111作为系列3、AV108:AV111作为系列4、AW108:AW111作为系列5,一个一个逐个添加进去(整个区域不能同时一起加入):
图-9
如上图所示,系列2-系列5的水平(分类)轴标签也选为AT105:AW105,确定后,将Y轴刻度调整为0-23,如下图所示:
图-10
逐个选中后添加的系列数据,在右键菜单上选“更改系列图表类型”,将其图表类型改变为堆积柱形图,如下图所示:
图-11
选中柱形,在“设置数据点格式”-“系列选项”中将“分类间距”滑动游标拖至为0,即无间距,如下图所示:
图-12
逐个选中堆积柱形的各个数据点,单独设置各个柱形的填充颜色,并删除图例和堆积柱形图的数据标志,为改善图形位置视觉效果,适当增加透明,再将Y轴刻度设置为15-23,如下图所示:
图-13
也可以随意选中各个数据点,调整颜色,使之横向与纵向区分都较为明显,如下图所示:
图-14
上述方法是增加一系列辅助数据,设置其为堆积柱形图,并使其分类之间间距为0,设置不同颜色,使之达到分割各个分区的目的。如适当调整后添加的辅助数据数值,其分割形式会更丰富。换言之,本例是以堆积柱形的填充代之以背景色,好处在于设置颜色的种类与区域比较多,既可以体现横向分区,也可以体现纵向分区,比较自由灵活多变。不过要说清:这只是一种替代方式,并非可以随意自定义设置绘图区背景色。
你是否渴望进一步提升数据可视化的能力,让数据展示更加专业、高效呢?现在,有一门绝佳的课程能满足你的需求 ——Python 数据可视化 18 讲(PyEcharts、Matplotlib、Seaborn)。
学习入口:https://edu.cda.cn/goods/show/3842?targetId=6751&preview=0
这门课程完全免费,且学习有效期长期有效。由 CDA 数据分析研究院的张彦存老师精心打造,他拥有丰富的实战经验,能将复杂知识通俗易懂地传授给你。课程深入讲解 matplotlib、seaborn、pyecharts 三大主流 Python 可视化工具,带你从基础绘图到高级定制,还涵盖多元图表类型和各类展示场景。无论是数据分析新手想要入门,还是有基础的从业者希望提升技能,亦或是对数据可视化感兴趣的爱好者,都能从这门课程中收获满满。点击课程链接,开启你的数据可视化进阶之旅,让数据可视化成为你职场晋升和探索数据世界的有力武器!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师:开启数据职业发展新征程 在数据成为核心生产要素的今天,数据分析师的职业价值愈发凸显。CDA(Certified D ...
2025-07-03从招聘要求看数据分析师的能力素养与职业发展 在数字化浪潮席卷全球的当下,数据已成为企业的核心资产,数据分析师岗位也随 ...
2025-07-03Power BI 中如何控制过滤器选择项目数并在超限时报错 引言 在使用 Power BI 进行数据可视化和分析的过程中,对过滤器的有 ...
2025-07-03把握 CDA 考试时间,开启数据分析职业之路 在数字化转型的时代浪潮下,数据已成为企业决策的核心驱动力。CDA(Certified Da ...
2025-07-02CDA 证书:银行招聘中的 “黄金通行证” 在金融科技飞速发展的当下,银行正加速向数字化、智能化转型,海量数据成为银行精准 ...
2025-07-02探索最优回归方程:数据背后的精准预测密码 在数据分析和统计学的广阔领域中,回归分析是揭示变量之间关系的重要工具,而回 ...
2025-07-02CDA 数据分析师报考条件全解析:开启数据洞察之旅 在当今数字化浪潮席卷全球的时代,数据已成为企业乃至整个社会发展的核心驱 ...
2025-07-01深入解析 SQL 中 CASE 语句条件的执行顺序 在 SQL 编程领域,CASE语句是实现条件逻辑判断、数据转换与分类的重要工 ...
2025-07-01SPSS 中计算三个变量交集的详细指南 在数据分析领域,挖掘变量之间的潜在关系是获取有价值信息的关键步骤。当我们需要探究 ...
2025-07-01CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25