什么是坏数据,它有何副作用
1.很多机构难以获得准确的数据来支撑他们的日常决策。原因就是坏数据。坏数据也称脏数据,是指错误的、具有误导性的、格式非法的信息。
2.但凡任何一间数据仓库,势必存在着某种形式的坏数据。完全避免坏数据的产生几乎是不可能的,但数据管理可以很好地帮你保持数据的干净。
信息和数据是一家机构最具战略意义的资产。数据仓库研究所(The Data Warehousing Institute)报告称:“智力资本和专业知识是比实体设施和设备更加重要的资产。”利用商业数据作出有效决策至关重要。
什么是坏数据?
制定数据策略不再是什么新鲜概念。然而,很多机构难以获得准确的数据来支撑他们的日常决策。原因就是坏数据。坏数据也称脏数据,是指错误的、具有误导性的、格式非法的信息。不幸的是,没有哪个行业、机构和部门可以免于坏数据的危害。如果未能及早发现和纠正,坏数据将可能导致严重后果。
坏数据的产生来源?
坏数据的产生原因?
起初,数据质量仅限于客户关系管理(CRM)系统,而今其复杂程度则已延伸到了结构化客户数据以外的范畴。想要提升数据质量,你必须深入探究,了解导致坏数据的确切原因:
·数据丢失:本应包含数据却未填写的空白栏。
·数据错误或不准确:信息没有被正确输入或者没有得到正常维护。
·数据不对应:数据被错误地输入到了其他栏中。
·数据格式不符:数据没有依照记录系统需要进行标准化处理。
·数据重复:同一账户、联系人、销售线索等在数据库中记录了不止一次。
·数据输入失误:字词、名称或格式方面的拼写错误、打字错误、顺序错误和歧义。
坏数据对数据仓库的影响?
“财富1000强企业因数据质量问题导致运营效率低下而蒙受的损失,将超过他们在数据仓库和客户关系管理(CRM)项目上的投入。”
——高德纳咨询公司(Gartner)
脏数据会严重破坏整个营收周期。各机构急切地想要填充销售漏斗,坏数据则趁机悄悄溜进我们的营销自动化系统和客户关系管理系统,带来各种影响,小至交易层级的损失,大到灾难性的后果。让我们来看看坏数据都会造成哪些影响:
·资源消耗增加
·维护成本升高
·产品/邮件投送出现差池
·客户满意度和留存率下降
·客户流失率升高
·活动成功标准失真
·营销自动化项目失败
·销售和分销渠道不尽人意
·垃圾邮件数量和退订人次增多
·社交媒体上出现负面评论
·决策依据错误或不足
·报告无效
·生产率下降
·营收流失
人们或许仍会回应目标定位失准的消息,但却根本无法回应他们收不到的消息。
——需求挖掘专家戴维·拉布(David Raab)
如何避免数据变坏或失效?
但凡任何一间数据仓库,势必存在着某种形式的坏数据。完全避免坏数据的产生几乎是不可能的,但数据管理可以很好地帮你保持数据的干净。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20