用大数据改进制造业必须掌握的3大要领
站在历史的角度看,一部人类史在某种程度上就是一部收集数据、分析数据、沉淀数据的历史。数据在人类的生产、生活中扮演着重要的角色,但由于技术水平的局限,在漫长的时间里,人类所产生的数据十分有限,然而,伴随着互联网的发展,特别是移动互联网的发展,人类迎来了一个前所未有的大数据时代。
过去30年,发达国家研发、消费,资源国家提供能源和原材料,中国加工制造的全球制造产业链正在发生变化。2008年金融危机后,全球经济陷入低迷,美国提出再工业化,德国进行工业4.0升级,日本发布制造业白皮书,发达国家欲重拾制造业的趋势愈加明显。另一方面,印度、越南正在成为全球新的制造业中心。这意味着我们曾经引以为豪的“中国制造”正面临着一系列的挑战。因此,如何利用新技术对我国制造业做全面的改造,以恢复“中国制造”的竞争力,在如今看来具有十分重要的现实意义。
马云在多个场合提出一个观点——人类正从IT时代走向DT时代。数据将成为未来最重要的生产资料,整个世界都将发生翻天覆地的变化。对数据的把握与利用不仅影响着人类的生活,也影响着未来制造业的发展方向。
提升效率,降低成本
到17世纪初,西方人均收入水平用了800年时间才翻了一番,而在随后的150年内,人均收入水平增长了13倍。
这一切的发生源于开始于18世纪中期的工业革命,大量机械的出现令人类的劳动效率有了飞速的提升。每一次工业革命的爆发,就意味着人类的劳动效率即将迈上一个新的高度。
2008年的金融危机使得全球经济陷入困境,但往往是绝望中也孕育着希望。为摆脱危机,全球技术创新渐趋活跃,新产业、新技术、新模式层出不穷。这成为了即将开始的第四次工业革爆发的导火线。
随着物联网、移动互联、智能机器人等新兴技术的飞速发展,制造型企业所面临的数据呈现爆炸式增长。所有的生产设备、感知设备和终端设备都在源源不断地产生数据,这些数据将渗透到企业的生产、运营等各个环节之中。传统制造业要完成蜕变式升级,对数据的收集、分析和利用是关键所在。
为用户提供价值是企业存在的根本,也是企业价值的来源。制造企业可以利用大数据技术对生产流程进行优化设计,以定制化的产品和服务来满足用户的个性化需求。另一方面,企业通过对市场数据的收集、分析、整理能够对市场变化做出准确判断,从而及时调整企业战略和资源配置,实现由大规模同质化生产向规模化定制化生产的转变。
在传统制造企业里,数据被分散在用户、合作伙伴以及企业的各个部门当中,这使得企业在获取数据的过程中要花费大量的成本。而大数据技术的出现就使得企业能够将所有数据轻松集中到一个平台上,确保企业内所有部门都能围绕着相同的数据展开协同工作,提升企业的运营效率,降低决策失误和部门沟通不畅所带来的成本损失。
增强创新
创新是企业不断前行的不竭动力。但对于企业,尤其是制造型企业来说,创新是一件艰苦而又高风险的事情。不仅需要前期投入大量的人力、财力、物力来研发,然而,即使能够开发出新的产品或服务,是否会被市场认可还是未知数。
大数据赋予了制造型企业更强的创新能力,在传统制造业中,用户仅仅是购买企业生产出的产品,而是参与到了研发、生产、营销等多个环节当中,在这个过程中将产生大量数据,运用好这些数据,就能从中洞察到最佳方案,从而创造出创新的产品和服务,令企业拥有之前不曾拥有的创新能力。
目前正在进行的第四次工业革命是基于信息物理系统(CPS)的智能化生产模式,使得企业拥有了随时收集、处理、分析和利用数据的能力。这意味着制造型企业不再是一个纯粹的生产者,而是成为充分利用大数据、移动互联网等技术的服务型企业。
对数据的实时把握能力创造了一种全新的跟踪服务模式。过去制造型企业就是在卖产品,产品到了用户手里,只要不出质量问题,那么至此就与企业无关了。然而,如果采用跟踪服务的模式,则产品卖出不仅不是结束,恰恰是一个新的服务阶段的开始。企业可以根据产品和用户的反馈数据,为用户提供有针对性的服务,从而令用户获得更好的服务体验。
有了大数据技术的支撑,企业具有了整合来自研发、生产、管理、营销等多方面的数据的能力。由此使得企业可以根据需要打破原有的窠臼,对业务流程和组织架构再造,以符合制造行业的新要求。
保障数据安全
数据在制造业中的充分应用为企业带来效益提升,创新能力增强的同时,也会使企业遭遇数据的烦恼。大数据技术要发挥效用,那么就要求企业完成数据化,这其中自然也包括商业秘密和技术专利等与企业生死存亡密切相关的敏感数据。因此,保护数据的安全成为企业必须有效解决的事情。
数据安全首先应受到企业领导层的高度重视,通过宣传、教育等多种方式使得所有员工都能拥有数据安全意识和基本的常识,制定并完善信息数据安全制度,加强日常的监督管理,从源头上降低企业信息数据泄露的风险。
对数据安全的保护仅仅依靠提升安全意识、掌握基本常识和制定安全制度是远远不够的。近年来网络攻击、软件漏洞等都在成为企业数据安全的重大威胁,这使得运用最新技术保护数据安全变得十分必要。
传统的安全防御技术难以应对不断升级的互联网攻击手段,而大数据技术可以对攻击事件的模式、时间和空间上的特征进行处理,总结抽象出一些模型,进而形成大数据安全工具,以消除和控制不断升级的互联网攻击手段所带来的危害。
结语
正在轰轰烈烈进行的第四次工业革命不仅是技术的升级,更是商业模式和企业组织的变革,但就其本质而言是人的思维和价值观的变革。中国制造要完成升级转型,思想或许比技术更重要。
数据分析咨询请扫描二维码
需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20