里约奥运英国赛艇队傲视群雄 大数据分析也是幕后英雄
令人瞩目的2016年里约奥运会近日落下帷幕,其中赛艇项目比赛于14日全部结束。上届的伦敦奥运,英国赛艇队获得4金2银3铜,傲视群雄。在本届奥运会14项共42枚奖牌中,英国赛艇队为英国代表队带来的奖牌数贡献依然巨大,以3金2银排在该项目奖牌榜首位。 作为奥运会英国队的代表性优势项目,赛艇队在争夺奖牌上的实力不容小觑。这项运动本身在比赛中可能因为多方面因素的细微影响而导致戏剧性的结果——第一名与第四名的差距也许只是几毫秒,但这却决定了运动员获得的是光荣的奖牌还是无限的遗憾。
提高训练效果
顶尖的英国赛艇队队员,每天需要进行好几次训练。训练中,单个运动员身上得到的训练数据已经非常可观,全队运动员的总体数据更是巨量。之前,这些数据散乱在多个数据库和表格中,数据的更新速度十分缓慢,因此导致了对这些数据的跟踪和分析十分困难。
为了充分备战里约奥运,英国赛艇队在早期便开始使用SAS解决方案来分析运动员数据和改善训练方法。赛艇队将数据更快更全面地汇总在一起,并进行更好地分析。这为运动科学家、教练和团队经理提供了一个可以跟踪运动员运动表现的平台,帮助他们更好地决策。
“英国赛艇队的训练地点有时在水上,有时在赛艇机上,有时在体育馆里。同时我们还会去一些高海拔的挑战性环境进行训练,”Mark Homer,英国赛艇队高级运动科学家说。
“将所有领域的数据进行汇总,结合比赛中所获得的数据,我们将汇聚一个巨大的数据源来指导训练和提高运动员的运动表现。但是如果没有分析的工具,这些数据就没有任何作用。通过与SAS的合作,我们现在能更深入和快速地分析这些赛艇运动员的数据。之前因为数据的分散,我们需要花费大量的精力和时间来汇总和分析单个运动员的信息,现在,我们可以马上搞定。”
减少受伤风险
英国赛艇队使用SAS可视化分析对来自多个数据源的数据进行分析。深入和快速地进行数据分析将帮助运动员最大化每次训练的效果。不光这样,数据分析还可以应用于发现运动伤害的迹象并进行修正,帮助运动员减少训练缺席,从而确保他们在比赛中处于最佳状态。
发掘赛艇人才
“现在,赛艇已经是一项比较成功的运动项目,从2012年开始我们就已经取得了一定的成绩,并从中尝到了甜头。所以当有新人加入这项运动的时候,我们需要能够引导他们,确认他们在正确的发展,”Homer说,“未来,数据分析将是帮助我们预测的关键,比如某运动员现在的成绩并不理想,但是通过数据分析,我们能知道他可能会在接下来几年大放异彩。”
通过数据建模,可以帮助教练和经理更好的理解运动员相关信息,协助他们进行决策。这就包括找出未来的赛艇新星,为不同的赛艇配置队员组合,优化每个组的比赛表现。
“运动员的运动技能可以使用多种方式进行评估,一个能够最大化已有数据资源利用率的工具对我们来说至关重要。利用这些数据我们将能够做出最佳决策。但是更令人兴奋的是寻找金矿时的未知——有些东西在我们开始分析数据前绝对不会预见到。因此我们能够发现更多关键要素,并将这些要素整合以影响整体的表现。
伴随着赛艇运动本身的不断的进步,未来,英国赛艇队将在SAS数据分析的帮助下科学训练,发掘新的运动人才,为下一个奥运周期做好准备。
数据分析咨询请扫描二维码
数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21