大数据涉足征信行业 企业信用将被颠覆
互联网时代,信息传播快速,市场竞争越来越严酷,企业信息不再是隐私,企业想要更好发展,就必须重视信用建设。本文将围绕征企业征信建设、传统与大数据征信来为大家揭开征信谜题
孟子有言:“至诚而不动者,未之有也;不诚,未有能动者也。”简而言之,这句话告诉我们做人要诚实守信,不真诚是无法感动人的。同理,企业信用的良 好与否也将决定着企业的生存命脉。然而,在市场经济的社会背景下,一些企业以快速盈利为目的不择手段,甚至以损害公司品牌名誉赚钱,道德底线沦陷,诚信缺 失尤其严重。
在此种因素下,社会大众在选择商品时越来越关注企业的信用,同样的企业也需要通过提升自己的信用建设良好的品牌形象。互联网时代,信息传播快速,市场竞争越来越严酷,企业信息不再是隐私,企业想要更好发展,就必须重视信用建设。 堂主将围绕征企业征信建设、传统与大数据征信来为大家揭开征信谜题。
完善企业信用档案好名声迎来诚信红利
堂主认为,企业信用建设不仅可以提升企业的知名度、信任度、影响力,还能带来更多的因为缺乏信任度而忽略掉的合作以及交易机会,大大提高企业在市场上的竞争力。信用积累,并非一天两天,堂主建议,企业建立信用档案越早加入越好!
在互联网高速发展的今天,企业可以通过“做广告”,有效地宣传企业品牌,但是无法传播信用,而信用档案将会是企业最好的广告。所以说,企业诚信不仅仅是社会诚信体系建设的重要支撑,还能为企业获得好的名声,带来诚信红利。
快速建设企业征信大数据更有优势
目前社会上有两种征信模式,传统征信和大数据征信。传统征信面临征信数据不全、接入门槛高、平台上传数据积极性低、更新不及时等多种问题。而大数据征信模式利用自身海量的数据优势,汇聚所有信息流,整理成企业信用报告,我们可以从报告中快速判断一家企业是否值得大众信赖、有没有不良记录以及合作风险 等情况。
大数据征信一般采用数学模型算法,免去了很多人工操作,避免了人为判断对结果的干扰。更重要的是,通过大数据能够及早预测风险,提前做好预防措施,降低风险的发生率。未来征信业的发展方向将以大数据征信为代表,全面改变商业交易模式。
360度构建企业画像 攻破企业征信难题
企业信用建设迫在眉睫,数据堂依托多年数据积累,整合了多个数据资源,利用数据挖掘技术,从多个维度构建企业画像,形成一套完善的企业征信数据服务体系。拿数据堂新推出的“企业360画像”产品来讲,我们从多个角度来探讨企业征信的用途。
(1)金融风控:做贷款前的信息核查、风险识别等,如:依据对企业基本信息、法院判决信息、关联企业信息、司法拍卖信息、失信信息等信息的变更进行全方面的风险监控。
(2)投资评估:依据企业基本信息、年报信息、关联企业等方面的数据服务,给投资者提供详实、精准、快速的企业信息,有效规避了企业及个人金融交易、尽职调查、投行评估等风险。
(3)企业征信报告:为制作企业征信报告的客户提供全方位的数据服务,全面记录企业各类经济活动,反应企业信用状况。最终帮助企业提前制定应对措施,主动调整合作方式,尽可能地规避商业风险。
借力大数据 企业开辟新格局
对于企业来讲,未来的竞争不单单是品牌的竞争,也是信用的竞争。互联网快速发展,为信用风险评估开辟了新的格局,大数据为企业征信提供了有力的技术后盾,但同时我们也要从泛滥的大数据中识珠,找到影响企业的风险因素所在,才能在变幻莫测的市场里不断成长壮大。
数据堂作为专业的大数据资源运营商,利用多个行业的数据资源,并对数据进行挖掘重组,勾画出360度的企业画像,助力企业征信数据多样性、创新性的发展,数据价值得以最大化的体现。
数据分析咨询请扫描二维码
数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20统计学专业的就业方向和前景非常广泛且充满机遇。随着大数据、人工智能等技术的快速发展,统计学的重要性进一步凸显,相关人才的 ...
2024-11-20