大数据四要素“预警、预测、决策、智能”
当我们提到大数据的要素特征,往往会想到从大数据概念诞生之日起就开始流传的4V理论,即海量、价值、快速、丰富。随着大数据的迅速发展,当拥有足够体量的数据后,人们发现,如果数据之间没有交互性,无法实现互联互通,即便是获取再丰富的数据也无法实现超越数据本身之外的价值。
九次方大数据创始人王叁寿提出,大数据的四要素是预警、预测、决策、智能。四点要素从功能的角度诠释了大数据的核心。王叁寿认为,最终实现这些功能还需要回归到大数据应用,唯有通过应用才能让大数据真正“着陆”。这一观点在全国如火如荼推动大数据产业发展之际,值得决策者去思考与深挖。
王叁寿解释,预警即通过数据采集、数据挖掘、数据分析,对已经存在的风险发出预报与警示,如通过数据分析发现某煤炭企业存在安全隐患;预测是指立足于纵向时间轴,对相对长时间内某些问题的判断从而形成指导,如根据气象数据预测农作物种植情况;决策是指通过所有相关数据的联动,形成基于数据和分析之上的决策或结论,例如,通过交管局与扶贫办数据的联动可以形成“谁是伪扶贫对象”的结论;智能,即当我们基于对现实问题的分析与判断,通过技术手段实现智能化的行为,例如,电商平台上一些恶意刷单和恶意注册的情况,通过数据分析与判断,就可以生成智能拦截。
王叁寿提出的大数据四要素,已经脱离数据本身的特点,让其从应用角度出发来实现价值。换句话说,大数据不是静态地存在,而是与周边数据发生碰撞和聚核。在某种程度上,大数据可以变成政府或企业的洞察力与行动力。这就形成大数据正确的表现形式:以往我们谈到的智慧交通管理系统、金融精准营销系统、旅游服务系统等,更多地是指向某一功能或作用,而大数据应该带给我们的不仅仅是停留在基于信息化上的某种功能之上,而是形成一个完整的决策系统,能够指导各个功能根据不同场景做出相应的正确回应。
举例来说,以往对安全生产监测会停留在对事故的统计与处理结论统计上,但通过大数据应用平台,可以将危险源、隐患、事故等的数据全部联动起来。对一个企业是否存在潜在危险的判断,不再是事故后的数据统计,而是通过监测企业外围数据,发现潜在风险。例如以周边人口密度、建筑物情况等数据来模拟最大损害情况,同时联动周边可调动的资源,如医疗情况、救护车等来实施救援。一方面,大数据可以发现安全隐患,尽早采取行动;另一方面,一旦企业出现安全事故,大数据能够形成整体的智能解决方案,实现对事故快速处置。
应用思维,就是大数据思维
虽然目前大数据被看做是基础性资源和重要生产力,但如何实现其应有的价值,仍在摸索当中。当前,各地纷纷兴建大数据中心。大数据中心实现了基础数据资源的存储、分类、整理,使得数据资源进入规模化时代。然而,如果以此为目标发展大数据相当于走入误区。“海量数据”、“大规模数据”等大数据中心提出的概念只着眼于数据规模本身,未能充分反映数据爆发时代下的数据处理与应用需求。
王叁寿认为,发展大数据产业,无论是基于技术开发、产品研发还是大数据公司的商业模式,仍然需要以“预警、预测、决策、智能”的大数据思维来落实数据应用,实现数据价值。事实上,这也正是大数据的应用思维,如果大数据不能实现这四大功能要素,价值迸发将会受到约束。
目前,王叁寿带领九次方大数据开发出了4000多个政府大数据应用场景,而这些应用场景已经成功让大数据在政府治理与政务管理领域落地,并建设了相应的大数据产品平台。
王叁寿将这个时代定义为“大数据应用的时代”,大数据的核心价值,正是需要通过基于在对事实数据累计的基础上,通过大数据采集、挖掘、分析等工具实现对当前形势或问题的科学预判以及对未来形势的科学预警,从而更科学、更智能地做出决策。
数据分析咨询请扫描二维码
数字化转型是企业提升竞争力和实现可持续发展的关键路径。面对快速变化的市场环境,以及技术的飞速发展,企业在数字化转型过程中 ...
2024-11-15CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13爬虫技术在数据分析中扮演着至关重要的角色,其主要作用体现在以下几个方面: 数据收集:爬虫能够自动化地从互联网上抓取大量数 ...
2024-11-13在数据分析中,数据可视化是一种将复杂数据转化为图表、图形或其他可视形式的技术,旨在通过直观的方式帮助人们理解数据的含义与 ...
2024-11-13在现代银行业中,数字化用户行为分析已成为优化产品和服务、提升客户体验和提高业务效率的重要工具。通过全面的数据采集、深入的 ...
2024-11-13在这个数据飞速增长的时代,企业若想在竞争中占据优势,必须充分利用数据分析优化其营销策略。数据不仅有助于理解市场趋势,还可 ...
2024-11-13数据分析行业的就业趋势显示出多个积极的发展方向。随着大数据和人工智能技术的不断进步,数据分析在各行各业中的应用变得越来越 ...
2024-11-13市场数据分析是一门涉及多种技能和工具的学科,对企业在竞争激烈的市场中保持竞争力至关重要。通过数据分析,企业不仅可以了解当 ...
2024-11-13数据分析与数据挖掘是数据科学领域中两个关键的组成部分,它们各有独特的目标、方法和应用场景。尽管它们经常在实际应用中结合使 ...
2024-11-13在如今这个数据驱动的时代,数据分析能力已经成为许多行业的重要技能。无论是为工作需要,还是为了职业转型,掌握数据分析都能够 ...
2024-11-13在如今这个数据驱动的时代,数据分析能力已经成为许多行业的重要技能。无论是为工作需要,还是为了职业转型,掌握数据分析都能够 ...
2024-11-13作为一名业务分析师,你肩负着将业务需求转化为技术解决方案的重任。面试这一角色时,涉及的问题多种多样,涵盖技术技能、分析能 ...
2024-11-13自学数据分析可能看似一项艰巨的任务,尤其在开始时。但是,通过一些策略和方法,你可以系统地学习和掌握数据分析的相关知识和技 ...
2024-11-10Excel是数据分析领域中的一款强大工具,它凭借其灵活的功能和易用的界面,成为了许多数据分析师和从业者的首选。无论是简单的数 ...
2024-11-10