京公网安备 11010802034615号
经营许可证编号:京B2-20210330
如何做好大数据的实时复杂查询
在过去的几年里,我们生活中几乎每一个功能都依赖于实时应用。无论是通过社交媒体更新我们的朋友圈,在线购物,还是等待客户服务的立即回应,我们已经变得越来越依赖快速有效的得到我们想要的信息。
然而我们不知道的是,这其中存在几个挑战:
在这些系统中流动着的大量数据
·需要一个高度可用的应用程序和数据存储
·高性能的要求·支持复杂查询。
·事务支持
我们可以尝试把这些挑战转化为3个部分:大数据,实时性和复杂查询。
第一个挑战-大数据
从大数据开始,要解决这些问题,我们有很多可以利用的解决方案。 最流行的解决方案是NoSQL数据库和Hadoop。 它们属于分布式环境,其中存在多个包含数据的分区。 通过分区间的复制,以确保在某一台服务器宕机时,我们可以从另一台服务器获取数据(大多数是最终一致的,这意味着副本可能没有最新的数据更新,但是这属于另外的讨论范畴)。 那么,如果我们采用这些NoSQL数据库,我以很容易地克服数据量和高可用性问题所带来的挑战。 它也是一种可扩展的解决方案,可以添加更多的计算和存储资源,这些将能够支持更多的数据和吞吐量。
第二个挑战-实时
实时是面临的主要挑战。目前主流的解决方案主要是基于磁盘的,这意味着没有对实时部分的支持,面对复杂的查询可能需要几分钟,有时甚至更多。 这就是为什么我们需要内存数据网格,它在内存中存储了部分数据或全部数据。 当数据存储在内存中,计算是可以做到非常快速的使用RAM而不是I / O访问。
但这种解决方案也不是那么容易。 我们也许可以在RAM中存储几个TB数据,但如果我们有更多的数据,那怎么办? 比如说50TB ......即使如今RAM变得便宜得多,但50TB也将是非常昂贵的。 此外,这也导致管理一个数据网格集群的机器数量过多。 一些内存数据网格解决方案提供了另一种方法,在磁盘中存储一些非活跃的数据。
固态硬盘可以为我们提供一个将二者合二为一的机会,前提是我们使用正确。虽然SSD并不像RAM一样快,但它比正常的磁盘快得多,而且比RAM便宜很多。 现在有2种方式,我们可以利用固态硬盘来实现非常大的集群和实时复杂查询:
*快速索引模式 - 我们将查询的字段存储在RAM中,将其余部分都存储在SSD上。 例如,如果我们有一个包含很多字段的大对象,我们只能在RAM中存储其中的一些索引,将一些次要字段存储在固态硬盘中,所以相比于常规磁盘,我们依然可以在它们之上进行非常快的查询。
*热数据---最近被使用的对象将被存储在RAM中,其他对象将被放入SSD。 这种方法还可能具有实时性的挑战,因为查询引擎在SSD上进行需要全部数据的复杂运算,而不是在RAM上。
第三个挑战-复杂查询
还剩下复杂查询这部分挑战,大多数应用在关系型数据库中有实时分析的需求,我们可以很容易地通过聚合查询实现 (avg, min, max, sum, group by)。而分布式环境中,这要复杂得多,因为数据在集群的分区中,聚和就意味着我们要么需要把所有的数据传输到客户端(这不是一种好的选择,因为它实在是太多了)或使用MapReduce逻辑模型,使用Map Reduce逻辑模型是一种不错解决方案,只不过没有简单SQL group by来的更直观而已。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02