以大数据助力供给侧结构性改革
习近平总书记指出:“当今世界,科技进步日新月异,互联网、云计算、大数据等现代信息技术深刻改变着人类的思维、生产、生活、学习方式”,“大数据是工业社会的‘自由’资源,谁掌握了数据,谁就掌握了主动权”。推进供给侧结构性改革,是“十三五”时期我国经济工作的主线。新形势下要把发展大数据作为重要抓手,充分挖掘和利用海量数据资源中蕴含的巨大价值,加快大数据成果转化和应用,以大数据等现代信息技术的发展,改善供给结构、提升供给质量。
巨大价值:
驱动发展、耦合供需
综观新一轮科技革命浪潮,大数据的重要性越发凸显,不论是人工智能、无人控制技术,还是量子信息技术、虚拟现实等,这些不断涌现出来的全新技术力量,都以大数据作为主要特征和战略资源。可以说,大数据正是新一轮科技革命的核心动能,正是DT(数据处理技术)时代的“钻石宝库”,正成为推动发展新的驱动力。也正因为此,当今世界各主要国家都非常重视大数据的发展,如美国于2012年启动了“大数据研究与发展计划”,英国于2013年推出了“数据能力发展战略规划”,日本于2014年发布了“智能日本ICT战略”,等等。大数据已成为大国博弈中一个新的战略阵地。
对于供给侧结构性改革而言,大数据的重要性还在于其能够集中反映市场需求变化,打通供需之间的内部联系,总结规律、预测趋势、辅助决策,为改革提供精细化服务。推动供给侧结构性改革,落实“三去一降一补”,并不是忽略需求的作用,而是要坚持以市场需求为导向,增强供给结构对需求变化的适应性和灵活性。大数据具有海量、多样、快速、真实等典型特征,利用大数据进行分析,企业能够找准市场需求、明确发展定位,进而创新产品、优化流程、降低成本、提升效益;政府也能够及时追踪企业乃至整个行业的发展动态,精准助力改革。
广泛应用:
助力转型、优化治理
数据是资源,应用是核心。要积极顺应大数据融合发展的趋势,正确把握其与供给侧结构性改革的关系,以大数据的广泛应用,助力产业转型升级,优化政府治理,增强供给体系的质量和效益。
供给侧结构性改革的重点,是减少无效和低端供给,扩大有效和中高端供给,这必定会加快发展的“动力切换”,推动经济的“升级换挡”。大数据本身即是新动能、新增长点,拥有广阔的市场空间;而且随着其向经济各领域的渗透应用,还将对传统产业产生重大冲击,加快产业之间及产业链之间的垂直整合速度,掀起企业内部的组织架构、管理模式等变革。应发挥大数据的牵引作用,深入实施科技创新战略,推动其与实体经济深度融合,促进产业结构向中高端迈进,塑造更多依靠创新驱动、更多发挥先发优势的引领型发展。要运用大数据加快发展新经济,通过“大数据+智能终端”“大数据+智能制造”“大数据+现代物流”等方式,培育壮大更多新产业新业态新模式。要运用大数据改造提升传统产业,加快技术改造、流程再造、信息化建设等进程,着力提升竞争能力和综合效益。
推进供给侧结构性改革,离不开政府这只“有形之手”。要积极借助大数据技术,正确认识和把握市场规律,着力提升政府决策科学化、管理精准化、服务便利化水平。尤其在当前经济发展步入新常态、经济增长呈现“L型”走势的情况下,政府应切实增强对投资、工业、服务业、财政、金融等领域数据资源的获取和利用能力,更多地采集客观数据和运用大数据分析方法,实现对经济运行更为准确、更为高效的监测预警和研判预测,在此基础上完善政策、精准施策。同时,要大力推行“互联网+政务服务”,围绕“数据多跑路、百姓少跑腿”目标,努力打造全覆盖、全联通、全方位、全天候、全过程的服务模式,提升政府服务效率。
突围路径:
问题导向、聚焦发力
近年来,我国大数据呈现出蓬勃发展的态势。在中央层面,国务院于2015年8月底出台了《促进大数据发展行动纲要》,这意味着发展大数据已经上升为国家战略。在地方层面,各地招数频出,在管理机构、系统平台、创新载体、数据交易等方面均有一定的发展。
但从全球角度看,我国大数据仍处于起步阶段。随着近年来大数据及其相关产业的加速发展,各种风险和挑战也日益显现。特别是由于大数据具有极强的技术和信息依赖性,信息资源共享难、核心关键技术缺失、数据安全风险高、产业体系不健全等问题,已成为制约大数据发展的瓶颈。要坚持问题导向,聚焦发力推进大数据战略行动,促进大数据健康发展,更好助力供给侧结构性改革。
信息资源共享是大数据发展的基础。要加快完善宏观制度规定,在已出台的《政务信息资源共享管理暂行办法》基础上,进一步细化、明确公共信息资源开放共享的内容、程序、标准等;要加强大数据共享平台建设,深入实施数据中心大整合工程,积极构建大数据信息共享服务体系。
核心关键技术是大数据发展的支撑。我国大数据建设长期依赖国际通行技术,自主研发实力较弱,特别是芯片和操作系统的自主创新能力不足。要加快核心关键技术的研发布局,强化海量数据存储、数据清理、数据计算、数据分析、数据可视化等领域关键技术攻关,推动制定相关标准和指南,抢占国际竞争的战略“高地”。
数据安全风险防控是大数据发展的生命线。要加快构建大数据安全保障体系,加强重要系统平台及关键信息基础设施安全维护,建立统一高效的数据安全检测和预警通报机制,切实维护涉及国家利益、公共安全等重点领域的信息安全,依法依规打击信息滥用、侵犯隐私、网络诈骗、盗取商业秘密等行为。
立体产业体系是大数据发展的必然趋势。要加强宏观政策引导,积极构建良好的创业创新环境,搭建大数据产业与其他产业联动发展机制,组建全国性、区域性的大数据产业联盟,推动大数据产业链各个环节企业无缝对接、深度合作,共享大数据发展红利。
数据分析咨询请扫描二维码
数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20统计学专业的就业方向和前景非常广泛且充满机遇。随着大数据、人工智能等技术的快速发展,统计学的重要性进一步凸显,相关人才的 ...
2024-11-20