创新大数据时代网络舆情引导
大数据时代,网络舆情产生速度快,数据体量大,而且异常复杂。在新的网络舆情环境下,我国的网络舆情引导受到了前所未有的挑战,同时大数据也为网络舆情引导带来了新的机遇。在新形势下,应积极树立大数据理念,深入挖掘和合理利用大数据在网络舆情引导中的价值,创新网络舆情引导思维,抓住网络舆情的本质特征,探索网络舆情演变的内在规律,尽快建立起适应新形势的网络舆情引导机制。
分析海量信息
预测发展趋势
大数据使网络舆情预测成为现实。对已经出现的网络舆情予以监测,这是网络舆情引导的传统做法,也是以往网络舆情管理的起始。但是利用大数据技术,可以对网络舆情中具有关联的数据进行挖掘并加以分析,使敏感信息在网络上传播的初始阶段就被监测到。在此基础上通过模型对网络舆情变化趋势进行仿真,使网络舆情预测成为现实。
大数据使网络舆情分析更为全面。实现网络舆情预测,至关重要的是对数据的相关性进行全面分析。而在传统的网络舆情引导中,由于数据库的缺乏和计算分析能力有限,往往难以全面分析网络舆情,得出的结论也有失偏颇。大数据环境下,对网络舆情的分析由静态化向动态化转变,由片面化向立体化转变,由单一化向全局化转变。利用大数据技术解构海量信息,并对这些信息加以重构,对网络数据的相关性进行深度挖掘,可以全面科学地分析并预测网络舆情的发展趋势。
大数据使网络舆情实现量化管理。使网络舆情得以量化,是利用大数据对网络舆情进行科学预测的前提。网络舆情信息量巨大,而被挖掘出来的网络舆情信息需要进行量化,在此基础上再建立数学模型对信息数据进行计算和分析。数据的量化指的是数据是可计算的,一是在密切关注网民态度与情绪变化的同时对其采用量化指标加以标识,二是对网络言论所持某一观点的人群数量进行统计,三是透过网络信息文字内容来对网民互动的社会关系网络数量进行统计。
大数据使网络舆情相互关联。网络信息是网络背后的网民所传达出来的信息的集合,因而对网络数据进行研究,实质上是对由人所组成的社会网络进行研究。要实现网络舆情预测,离不开对网络舆情之间的关系进行关联这一尤为重要的大数据技术。在大数据时代,每个网络数据都被看作是一个节点,能够在舆情链上与其他关联数据不受限制地产生乘法效应,这种关联如同数据裂变,会扩大至全体网络数据,使舆情分析更为准确。
加强技术支撑
储备新型人才
重构大数据时代网络舆情引导战略。牢牢把握新契机,充分发挥大数据所具有的不可比拟的优势,重构大数据时代网络舆情引导战略。在大数据技术的帮助下不断提高网络舆情引导的预见性,进一步增强网络舆情引导的目的性。通过数据分析来了解网民群体的言论和心理特征,预测网络舆情变化趋势。加强政府网站建设,针对网络舆情特征有针对性地加以引导。挖掘数据信息,对数据的价值进行转化,使网络舆情引导的价值得以实现,使网络舆情引导具有更高的公信力。发挥主流媒体的作用,积极与社会公众进行沟通,使网络舆情引导及时有效。
积极创新网络舆情引导技术与手段。利用大数据有效地进行网络舆情引导离不开先进技术的支撑。一方面,掌握数据处理与分析等各种技术软件的应用,有效利用各种大数据技术平台实现网络舆情的分析、预测与引导。另一方面,应积极完善各项技术,创新对网络数据进行监测、挖掘、存储与分析的各种技术,对数据安全也应利用新技术进行维护。同时,大数据时代的网络环境更为复杂,网络舆情引导的难度加大,除了创新教育引导等手段,还需要通过法律等强制性手段进行规范。只有不断创新技术和手段,才能应对不断变化的网络舆情形势,保障网络舆情引导工作顺利开展。
大力培养网络舆情引导新型人才。在大数据时代,网络舆情引导急需高素质的新型复合型人才。为了满足当前大数据时代网络舆情引导对人才的迫切需求,可以采用招考等形式发掘数据分析等方面的高素质人才,采用培训和进修等形式提高现有专业人才的素质。要建立网络舆情引导人才培养的长效机制,对网络舆情引导人才需求进行系统分析,确定人才培养目标。与我国当前的学科专业人才培养体系相结合,培养既具有综合学科知识,又具有较高专业素养的网络舆情管理新型人才,加快大数据时代网络舆情引导人才队伍建设。
尽快完善网络舆情引导体制建设。规范大数据时代网络舆情引导工作,必然要求进一步完善网络舆情引导体制机制。尽快将网络舆情多元化管理的联动机制建立起来。制定大数据时代网络舆情引导战略规划,将产学研紧密地结合在一起,科学统筹政府、社会等多方力量,形成联动机制。网络舆情引导机构的设置应成为常态,并配备适当数量的专业人才,使网络舆情引导工作更加精细化。建立权责清晰的网络舆情引导责任机制,通过相关立法将网络舆情引导各部门的权利和义务予以明确。尽快完善相关保障机制,为大数据时代网络舆情引导提供有力的资源保障。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20