精准医学之贝瑞和康基因组“大数据之路”
自基因测序技术被发明以来,建设人类基因组数据库一直是各国基因组研究中心的核心内容之一,人类基因组数据库的宗旨是为从事人类基因组研究的科学家和医护人员提供人类基因组信息。目前国际上人类基因组数据大多来源于西方白种人,然而不同人种的进化差异会导致明显的易感基因差异、特异性位点突变频率不同、基因突变表观差异等,因此在我国分子诊断与精准医学飞速发展的背景下,建立高质量的中国人群基因组数据库已经成为当下制约分子医学发展的重要壁垒。今年两会上,委员也建议应尽快建立精准医学资源库,整合共享医疗大数据,促进精准医学更好的发展。
贝瑞和康作为致力于将高通量测序技术实现临床转化的行业领导者,早在2015年8月14日宣布与云计算服务平台提供商阿里云达成合作,共同打造以海量的中国人群基因组数据为核心的数据云,实现对个人基因组数据的精准解读。该项目由美国贝勒医学院、现任职贝瑞和康CIO的于福利教授牵头,参与“神州基因组数据云”项目的研究人员达到了100多人,由医学、分子生物学、遗传学、计算机编程等研究领域的博士组成。项目组分成三个团队,一个是贝瑞和康的研究团队,一个是于福利在贝勒实验室的团队,另外一个则是专门做高性能运算的阿里云团队。
神州基因组数据云,是一个知识密集型项目。
阿里云拥有批量计算服务的强大能力,贝瑞和康则深耕基因检测多年已积累超过百万人群基因组数据,此次选取其中四十万人份数据作为“神州基因组数据云”项目的第一阶段数据,旨在借助云计算对该数据资源进行深入挖掘,进一步揭示中国人群遗传突变分布,提升中国人遗传疾病诊断的效率和精准程度。
当基因测序成本迅速下降以后,拥有数据量的多少不再是行业里唯一的竞争优势,而是否能够将海量的大数据进行解读,转换成具体能够应用的有效信息,才是测序企业发展的核心竞争力。光有云计算能力和基因组数据还不够,分析和注释技术是能否达成项目目标的内在核心驱动力。该项目发布一年后,也即2016年8月24日贝瑞和康公布了为基因数据分析开发的两大核心专利技术:Verita Trekker®变异位点检测系统和Enliven®变异位点注释系统。
Verita Trekker®经过严格的基因型质量控制,SNP 检测的灵敏度达99.00%,特异性达99.99%,真阳性率达99.90%;Indel 检测的真阳性率达88.00%;家系样本基因型真阳性率大于99.90%;各项指标均属国际业界一流水平。而Enliven®则通过统计学计算和文本挖掘方法整合国际权威的超过50个数据库和预测算法,其中也包括“神州基因组数据云”项目所产生的中国人特有基因信息数据库。同时,支持千万篇文献的即时查找,全面覆盖基因、变异、表型、疾病信息,参考权威文献、美国医学遗传学学会(ACMG)标准与实际基因型-表型对应,在这样完善的体系和先进的算法的保障下,能够出具可靠的变异致病性结果,为科研工作者和临床医生更好的研究和制定精准医疗方案提供帮助。
在Verita Trekker®和Enliven®两大核心技术共同驱动下的“神州基因组数据云”项目取得了阶段性的重要成果。2016年9月8日,贝瑞和康已完成世界首个中国人群基因组数据库建设,填补了国际基因数据库中缺少中国人群特有基因组数据信息的空白。
同年9月23日,在第十九届全国临床肿瘤学大会暨CSCO学术年会上,贝瑞和康进一步展示了该项目的重要成果应用。这其中包括与北京大学肿瘤医院解云涛教授合作的“中国人遗传性乳腺癌基因突变图谱项目”,以及中国40万人基因组大数据项目在临床应用层面上所取得的阶段性成果,结果显示中国人乳腺癌基因突变和其他人种相比具有显著性差异。
项目由解云涛教授和于福利教授共同展示,可以看到采用Enliven®变异位点注释系统对美国国家卫生研究院的相关项目中的BRCA1、BRCA2基因的2152个位点进行注释,将注释结果与以往报告结果对比,PPV(阳性预测值)达到99.3%,充分验证了Enliven®注释和解读能力的准确性。在此基础上,贝瑞和康将自建的中国人基因组数据库与万例妇科肿瘤患者的基因数据进行整合,建设成为全球最大的妇科肿瘤基因组数据库。
现在,神州基因组数据云项目仍在进行中,中国人群的基因组大数据正在成倍累积增长。受益于测序成本下降,降低获得大量数据的难度,因此只要在数据解读能力上快速突破,中国非常有可能在生物基因信息解读这一领域实现弯道超车。
“神州基因组数据云”项目的另一层意义则与我国医疗政策中正在力推的分级诊疗政策息息相关。通过与专家合作,大数据体系为90%以上的医院提供解读能力,这将对基层临床产生重要的指导意义。可以想象,在三四线城市,医生利用该数据云平台分析基因测序数据,在当地可以获得同样质量的检测分析,获得和在大城市大医院同等质量的报告,就能够进一步促进实现分级诊疗。于福利教授展望道。
数据分析咨询请扫描二维码
数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20统计学专业的就业方向和前景非常广泛且充满机遇。随着大数据、人工智能等技术的快速发展,统计学的重要性进一步凸显,相关人才的 ...
2024-11-20