数据基因是建设好政务大数据的奠基石
数据正在重塑当今时代资源观
未来如果一个组织未能掌握数据,不能运用数据,那么这个组织的竞争力将会越来越下降,不管这个组织是企业还是商业机构或者政府,对数据的治理能力决定未来新的竞争优势。数据治理能力正在成为组织竞争新优势。
数据正在重塑当今时代资源观。信息时代正在上演计算、连接、数据“三部曲”,在计算时代,我们关注的是信息的本地化处理,在连接时代关注的是关系价值,在数据时代关注的则是如何将数据资产化。能源和物质具有不可复制性,并且在使用过程中是不断消耗的过程,而信息资源在传递和应用的过程中是被不断赋予新的价值。数据时代的浪潮比想象的还要迅猛,互联网的核心是连接(信息层)和关系(价值层)构成的价值网络,大数据则可以更精准地反映、认识和掌握世界,数据资源的价值凸显,数据的多寡、好坏、开发利用能力的强弱已经直接影响组织运营和创新服务能力。人类社会正在进入数据时代,从关注网络、系统到注重数据,已成为当前信息化的重要视角与核心任务。
政务大数据发展的现状与挑战
数据成为当今信息化发展的重要视角和应用,但如果是假数据或者是质量不高的数据,那么就将会影响整个系统的运行效率。当前我国政务大数据发展主要存在以下问题:
第一是网络复杂,包括政务网,互联网,政务专网、外网等等;
第二是系统庞杂,一些大城市可能有几千个系统,各种格式、各种规模、各种标准等给管理带来巨大挑战;
第三是数据混杂,不同种类、不同颗粒度的数据混淆不清;
第四是数据体量越来越大,随着各种传感设备的使用增多,以及在业务系统中的应用增多,数据体量前所未有地飙升;
第五是需求多样,以前对数据的需求偏单一,现在越来越能感受到对数据的渴望,尤其是商业系统对数据的渴望。
从全球政府数据开放的角度来看,目前政府数据还存在四个方面问题:
第一是“少”,相比大型互联网平台而言,从政府数据开放平台的开放量来看还是太少;
第二是“乱”,数据管理方面格式规范混乱;
第三是“差”,数据质量过于粗糙,还没有达到提纯应用的标准;
第四是“死”,数据的流动性较差,没有流动就没有价值。因此亟待建立规范统一、运行高效、服务有力、保障到位的信息体系。
虽然城市大数据中心已经成为智慧城市发展的标配,但同时面临多方面的机遇与挑战。首先多个政策强调支持政务大数据中心建设,各地发展需求越来越多,技术的支撑能力越来越强。同时,政务大数据怎么应用,怎么管理,怎么发展等等数据价值的深度认识还不够,对政务大数据中心的组织能力、维护能力,管理能力等也面临困难。从挑战性方面来说,有来自城市为主的同行的挑战,有来自管理的挑战以及来自绩效要求的挑战。
对于政务大数据的管理,有很多要点和难点是并存的。
第一点就是如何确保数据质量,如果我们数据质量不能确保,基础不牢则可能“地动山摇”,比方说我们来自特征数据库得到人口的信息,如果差异很大的话,我们就会不知道哪些数据是准确的。如果有一块表的使我们很容易知道时间是多少,但是如果有两块表的时候,我们对时间的判断将会出现凌乱,如果有十块表的话你完全不知道时间是多少。所以各个系统的数据质量不能保证的话,数据用起来将会心惊胆战。
第二是数据的管理能力与管理方式,不能因循守旧依靠传统方式去管理政务大数据;
第三是如何建立有序的信息规则,实现数据有序共享与流动,大数据应用具有很多关联部门,存在着利益主体及相关者,如何构建好信息规则让利益相关者共建和共赢;
第四是数据如何实现按需流动,数据是一种极具价值的社会公共财富,是一种在使用过程中价值不会衰减而会增加的社会资源,数据因流动而产生价值,所以我们提倡“按需流动”,这也是国脉在电子政务领域的长期研究而首先提出的观点;第五是如何真正实现数据驱动服务。
重塑信息体系需从数据基因构建开始
关于政务大数据应用与管理尚有待深入思考的关键问题,包括底层数据如何确保一致?信息体系如何有效运营?数据价值如何有效开发?如何促进大数据产业发展?如何有力、有序、有效管理与服务?等等。而这些问题的背后则提出了元数据/数据元的标准化、信息规则的建立、数据应用的内生动力体系以及建立可持续发展的保障体系等要求,问题的核心是——基于数据开发基础上的大数据公共服务平台应如何建设与运营。传统的信息体系更多关注的是流程与业务逻辑,以网络和系统为主,而要从数据视角重构信息体系,需要关注数据的流动性和数据价值利用,其核心逻辑是遵从信息流动的内在逻辑,发挥数据最大价值,提供数据复用率,按照数据流动逻辑而非现实规则逻辑来重塑信息体系。
要重塑大数据时代的信息体系,构建健壮的信息体系依赖于优质的数据基因系统,数据体系的能力大小、发展前景和应用价值,从缔造数据基因开始。数据基因具有稳定性、可复制性、可剪辑性,保障内部信息的规则的一致性。优质的数据基因系统应有助于解决当前数据治理的相关问题,从根本和底层上解决数据发展难题,并有助于信息体系的成长发展。而构建数据基因系统需要以数据标准化为原点,从数据元和元数据的标准化开始。标准化是解决数据的关联能力,保障信息的交互、流动、系统可访问,提高数据活化能力。保障信息体系不发生混乱,确保数据规范一致性——避免数据混乱、冲突、多样、一数多源。
随着政府部门的数据越来越多、需求越来越旺、呼声越来越高,压力越来越大,数据管理部门的角色也将发生变化,从收集数据、管理系统、保障低层次运维逐步转变为数据资源管理、挖掘、开放与创新利用,从系统运维保障者进化为数据开发运维者。面对政务大数据的发展需求,亟需对数据基础管理服务平台进行体系性、结构性改造,从数据基因出发,从底层构建数据元标准,通过对信息体系的重构迎来智慧应用的新生。
2017.2.15国脉首发“数据基因”产品奠基政务大数据体系建设
政务大数据基因系统是按照国家、行业和地方标准,通过政务数据元、元数据标准化和数据模板化实现数据规范编辑、智能管理、关联应用和共享开放,以提升全域或行业的数据资源活化和管理能级。它是实现数据跨系统共享交换、创新应用的底层逻辑和关键规则体系,是解决(大)数据混杂、提升数据质量、促进数据创新应用的前提,也是集成信息资源目录体系、交换体系和开放体系三合一的管理平台,为优化政务数据体系、探索数据关系、驱动数据服务奠定基础。是城市和行业数据中心的必备管理工具,实现从管网络、系统到管用数据的跃迁。本文来自国脉物联网
数据分析咨询请扫描二维码
数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20统计学专业的就业方向和前景非常广泛且充满机遇。随着大数据、人工智能等技术的快速发展,统计学的重要性进一步凸显,相关人才的 ...
2024-11-20