监管科技应用之贵州样本: 大数据、人工智能 助力防范互金风险
5月27日在贵阳结束的“2017中国国际大数据产业博览会”上,21世纪经济报道记者注意到,一些科技手段正成为监管部门的重要辅助。
而贵阳市,正着手联合百度金融等机构,借助人工智能、大数据、机器学习等科技力量打造“贵州金融大脑”,以监管科技对全省金融风险等领域实施并加强持续监测和预警。
实际上,监管科技(RegTech)在金融科技中的关注度正不断升温,且已成应用热门。
除中国人民银行成立金融科技委员会外,包括中国证券投资基金业协会、中国互联网金融协会以及中国支付清算协会也成立了金融科技专委会或相关研究工作组。
中国人民银行科技司司长李伟指出,新技术与金融业务交叉渗透,使金融业态复杂多变,潜在风险不容忽视。央行方面也指出,强化监管科技应用实践,利用大数据、人工智能、云计算等金融监管手段,提升跨行业、跨市场交叉性金融风险的甄别、防范和化解能力。
贵阳市人民政府副市长王玉祥在数博会上介绍,贵阳在去年5月推出了大数据防护金融风险平台,叠加区块链技术的2.0版本将在6月份发布。这一版本可覆盖传统金融和新金融机构,实施政府监管和一些商业化服务。接下来,贵阳还将与专门从事大数据金融风险控制模型的美国SAS公司合作,研发3.0版本的风险防控平台。
在贵州,金融云工程与地方金融风险防范工程均是2017年六大工程之一,而金融云建设与地方金融风险防范密切相关。
联手百度打造“金融大脑”监测系统
按照贵州省对金融云工程的建设设想,将综合运营大数据、云计算、区块链、人工智能等前沿科技,实现政府、金融监管部门、金融机构数据信息的汇聚、打通、应用,降低监管成本,防范化解风险。
目前,其一期工程在政用方面已经实现金融风险监测预警、地方金融审批监管、企业信息查询、打击非法集资举报分析等平台。商用领域则可以实现金融机构的网络舆情数据库、金融政策、金融机构黑名单查询、授信信息查询等资源共享平台。其二期将覆盖地方交易场所、小贷公司、融资担保公司的第三方存管、登记结算以及金融风险动态监测等功能。
贵州金融云三期主要是建设贵州金融大脑,实现对全省金融风险和地方金融机构经营风险的持续监测和预警,提升金融精准服务、服务“三农”和小微企业能力。
在数博会上,由百度金融联合贵州省金融办、大数据局等部门合作推出“贵州金融大脑”亮相。
百度副总裁张旭阳介绍,“贵州金融大脑”以人工智能、大数据、机器学习为技术基础,融合贵州省政务、企业、金融、互联网等多渠道数据,对中小微企业进行画像,金融机构可以此作为参考为中小微企业提供相应的融资服务。
监管科技的应用与威力
百度金融还表示,将继续探索与地方政府大数据合作模式,将科技能力复制到其他地区。
以庞大的地方国资系统为例,国资委过去在管理国企时受人员精力所限,基本只管理到集团一级,而国企集团下属子公司、孙公司层级庞大,难以覆盖。贵州基石数据科技有限公司业务负责人告诉21世纪经济报道记者,通过授权,公司对国有企业数据库中的国企行为信息进行分析和描述,对国企生产经营、改制重组、资产处置、关联交易、招投标过程中等方面的重点监控,如发现企业及关联企业潜在风险,并在事中出现异动在线监控,事后及时监管处置。还可以针对性设置重点关注模块,便于管理部门及时掌握企业动态并作出决策。
基石数据另一业务负责人表示,以互联网金融为例,除工商注册中涉及投资管理的企业外,还有许多公司以科技的名义注册但从事投资咨询事宜,这时就应当对企业在互联网上涉及投资宣传的一并纳入观察企业库,结合法院判决信息、企业工商信息等,多维度共同对互联网金融平台进行风险分级。
目前,新三板市场挂牌企业已达到11250家。一位股转系统负责人感叹,单靠人力已经管不过来,以技术为支撑的大数据监管成为可能,并且已经开始尝试应用。
腾讯云反欺诈平台方面介绍,平台投入无锡市使用近两个月,该市网络诈骗案件涉及的网址链接中,72%的中奖诈骗网址、85%的手机病毒链接、98%的仿冒银行和伪基站网址得到过滤拦截。通过与6省市的公安部门、运营商以及部分通信管理部门合作,平台在全国超过20个城市落地,仿冒公检法类诈骗的总金额下降超过一半。
21世纪经济报道记者在采访中了解到,许多监管部门都已经采用技术手段提升管理能力和水平。不过,背后仍需政府部门的数据打通和监管合力支撑。
一位中部地方国资机构人士表示,贵州作为大数据综合试验区,许多政府部门的数据打通上起到了较好的示范。但由于其所在地区政府部门的数据共享打通缺少顶层设计,部门间割裂比较明显,在大数据等技术支持监管等方面仍有较长的路要走。
数据分析咨询请扫描二维码
数字化转型是企业提升竞争力和实现可持续发展的关键路径。面对快速变化的市场环境,以及技术的飞速发展,企业在数字化转型过程中 ...
2024-11-15CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13爬虫技术在数据分析中扮演着至关重要的角色,其主要作用体现在以下几个方面: 数据收集:爬虫能够自动化地从互联网上抓取大量数 ...
2024-11-13在数据分析中,数据可视化是一种将复杂数据转化为图表、图形或其他可视形式的技术,旨在通过直观的方式帮助人们理解数据的含义与 ...
2024-11-13在现代银行业中,数字化用户行为分析已成为优化产品和服务、提升客户体验和提高业务效率的重要工具。通过全面的数据采集、深入的 ...
2024-11-13在这个数据飞速增长的时代,企业若想在竞争中占据优势,必须充分利用数据分析优化其营销策略。数据不仅有助于理解市场趋势,还可 ...
2024-11-13数据分析行业的就业趋势显示出多个积极的发展方向。随着大数据和人工智能技术的不断进步,数据分析在各行各业中的应用变得越来越 ...
2024-11-13市场数据分析是一门涉及多种技能和工具的学科,对企业在竞争激烈的市场中保持竞争力至关重要。通过数据分析,企业不仅可以了解当 ...
2024-11-13数据分析与数据挖掘是数据科学领域中两个关键的组成部分,它们各有独特的目标、方法和应用场景。尽管它们经常在实际应用中结合使 ...
2024-11-13在如今这个数据驱动的时代,数据分析能力已经成为许多行业的重要技能。无论是为工作需要,还是为了职业转型,掌握数据分析都能够 ...
2024-11-13在如今这个数据驱动的时代,数据分析能力已经成为许多行业的重要技能。无论是为工作需要,还是为了职业转型,掌握数据分析都能够 ...
2024-11-13作为一名业务分析师,你肩负着将业务需求转化为技术解决方案的重任。面试这一角色时,涉及的问题多种多样,涵盖技术技能、分析能 ...
2024-11-13自学数据分析可能看似一项艰巨的任务,尤其在开始时。但是,通过一些策略和方法,你可以系统地学习和掌握数据分析的相关知识和技 ...
2024-11-10Excel是数据分析领域中的一款强大工具,它凭借其灵活的功能和易用的界面,成为了许多数据分析师和从业者的首选。无论是简单的数 ...
2024-11-10