博为大数据采集技术助力多源异构电力系统数据融合
电力工业作为国家重大的能源支撑体系,应用领域越来越广泛。而环境监管要求的日趋严格以及各国能源政策的调整,对电力系统提出了节能、绿色、安全、自愈、可靠运行的要求,传统的电力网络已经难以满足这些要求。而随着互联网、云计算、物联网技术的应用与普及,让被称为IT行业又一颠覆性技术革命的“大数据”诞生了。电力+大数据,成为电力系统应对新需求、新形势的出路。
电力数据的多源与“大”早在2006年,国家的“SG186工程”就提出了将全国电网建成“一体化企业级信息集成平台”的目标,以保证电网的数据能“一处录入,全网使用”,为信息的真实性、一致性和完整性提供保障。
电力数据在行业内部主要涉及电力生产和电力服务的各环节数据,从发电、输电、变电、配电、用电到调度,每个环节都会产生海量数据,如电厂发电过程中的能源基准参数、电能生产、运行监控和设备检修等数据;电力企业运行中的用户资料、电力市场等信息;配电公司管理中的人才物资、协同办公、资本运作等数据,一起构成了多源、异构、多维、多形式的电力数据资源。
同时,电力系统的数据也满足大数据“大”的特点:常规SCADA系统按采样间隔3-4S计算,10000个采集点一年能产生1.03TB数据;国家电网公司的2.4亿块智能电表,年产生数据量约为200TB;而整个国家电网公司信息系统灾备中心的数据总量,接近15 PB。不仅仅如此,GIS、EMS、DTS等系统也在随时产生、传输与存储数据,而且随着电能应用领域的不断拓宽与电力信息化的不断深入,电力数据正在以前所未有的速度增长。
异构数据融合技术是实现电力大数据的基础
电力数据如何为智能电网、智慧城市以及节能减排服务,成为全世界都在研究的课题。
在我国,由于各级电力调度中心在信息化建设过程,各单位、各部门是以阶段性、功能性的方式推进,缺乏数据输出的标准化规定,导致电网从诞生之日起,就积累了大量采用不同存储方式、不同数据模型、不同编码规则的电网参数,这些数据既有简单的文件数据库,也有复杂的网络数据库,其构成了电网的异构数据源。
博为软件独创异构大数据融合技术,无需多软件间的接口对接,直接基于windows环境采集各个系统之间的多源异构数据,并实时输出结构化数据,该技术广泛适用于需要进行数据融合、数据迁移的各个行业。在电力系统,博为软件可以进行电力资产全寿命周期管理、营销和配电协调管理,从而逐渐形成以数据为中心的企业信息化管理系统,促进数据资源共享,发挥大数据的价值。
电力大数据将改变什么?电力大数据的价值在于通过挖掘数据之间的关系和规律,在保证供电充裕度、优化电力资源配置以及辅助政府决策、能源利用等方面将会产生颠覆性作用:
通过电力用户特征分析发现用电规律,从需求侧预测电能供给,从而指导电力生产,改变现有通过粗犷式一定量的备用电容应对紧急情况的方式,增加电能的利用率。同时,通过用户用电习惯分析,也有利于电力营销的进行。
通过电力大数据可以清楚的知道全国电网的分布情况与电力使用情况,发现电网布局或者发、输、变电环节的不合理现象,让政府的相关决策以数据为基础,改变“拍脑袋”定方案模式,让电网更科学、更智能。电力大数据因其全生命周期性、全系统覆盖的特征,能通过数据发现电力生产与电力服务之间的问题,预防大规模停电的发生,在保证供电稳定性以及灾害天气时电力的恢复速度方面,提供了坚强后盾。
电力作为生产、生活中必不可少的基础能源系统,是构筑绿色、节能、便利的智慧城市系统和发展“一次性能源的清洁替代和终端能源的电能替代”的大能源系统的枢纽环节,精准的电力大数据无疑是该枢纽中的“核心”,起着牵一发而动全身的作用。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20