医疗大数据飞速发展:人工智能优越性突显
医疗行业是典型的数据密集型行业,医疗信息数据一直是医疗健康领域最重要的核心。随着数据生成和共享的速度急速增加,医疗数据加速累积。IDC曾预测截至2020年全球医疗数据量将达到40万亿GB,大约是2010年的30倍之多。可以说,信息化和医疗数据的规模和质量推动了医疗健康的进步和发展。
而医疗大数据产业的发展是由价值医疗驱动的,也就是医疗服务质量与医疗成本的双赢,其潜在的价值空间非常巨大。医疗大数据产生于具体的应用场景,服务于居民、医疗服务机构、科研机构、公共健康管理部门,医疗保险管理机构以及商保公司等。
多种场景产生医疗数据
事实上,医疗大数据产生的场景很多,有来自医院、诊所、第三方检测机构、科研机构、社保部门、药店、互联网医疗公司终端等等与医疗相关的机构。我们将其分为主要的4个类别:
1、诊疗数据。这是患者在医院、诊所等医疗机构就医过程中产生的数据。一般包括电子病历,用药选择,生化、免疫、PCR等传统检测项目结果以及基因测序等新兴检测项目结果。其中随着近年来基因组学概念的普及,基因检测逐渐兴起,其产生的检测数据增长非常之快。与之诞生了一批相关创新型企业。
2、研发数据。医药器械研发企业、研发服务外包企业、科研机构等在研发过程中会产生一批研发数据,诸如医药研发过程中临床试验的数据,科研进展等等。
3、患者数据。这类数据是由患者自身的行为和感官产生的,采集的终端一般是可穿戴设备和各类网上医疗平台。比方说通过可穿戴设备收集的体征类的健康管理数据;网上挂号问诊、网络购药、医患病友交流等网络行为产生的数据等。
4、支付和医保数据。患者支付记录、报销记录、医药流通记录等等,一切与付费方相关的审核与报销记录都会产生相关数据。
五大应用场景的医疗大数据
具有“4V性”+“医疗性”
由此众多场景产生规模巨大的诊疗数据、患者行为感官数据、研发数据、支付医保数据等,构成了质量参差不齐医疗大数据,不仅具有大数据的“4V性”,即规模大(Volume)、类型多样(Variety)、增长快(Velocity)和价值大(Value),且具有医疗领域的多态性、时序性和隐私性,同时也具有不完整性和冗余性。
医疗大数据潜在的变现能力不同。一般来讲,我们主要将其应用在5大场景,分别是:
1、临床决策支持。用于例如病情早发现并及时干预,以及实现精准医疗,精准用药等。临床决策支持系统、基因检测等能够帮助医生提高医疗服务质量。
2、慢病及健康管理。这主要包括实时监控用户的身体状况;为用户实施个性化的健康管理方案;利用数据的健康管理降低重病发病率以减少医疗支出。这是基于慢病及健康管理数据库结合远程智能监护系统和可穿戴设备等帮助个人实现健康管理。
3、医疗支付。利用医疗大数据能够减少现有支付体系的压力,降低由病因不确定导致的医疗资源浪费,此外基于患者付费和疾病数据,结合健康管理能降低保险公司赔付的成本,帮助保险公司开发新产品和提高盈利率。当然通过药品流通数据能够优化医药流通环节从而降低医药成本。
4、医药研发。通过智能数据分析系统,能在医药研发过程中减少人力、时间、物力等投入,降低药品研发成本。同时基于疾病、用药等建立数据模型,预测药品研发过程中的安全性、有效性、副作用等。
5、医疗管理。通过数据整合分析,智能应用等帮助医院运营管理。可通过多家医院的数据,建立和完善区域及跨区域的疾病防控、妇幼健康、综合监督、食品安全、血液管理、分级诊疗等,实现医疗资源合理配置。
政策和资本助力,医疗大数据公司如春笋般增长
因而,医疗大数据一直是医疗领域最重要的核心,同时也是我们当前面临的短板。之所以如此认为,主要由当前我国医疗的现状所反应。对于人口基数巨大,却存在医疗资源浪费严重、紧缺和配置不合理,以及医疗支出增长过快和医疗保险发展乏力等问题,我国的医疗大数据的市场规模非常可观,保守估计将达到千亿级,医疗大数据的可应用场景也很丰富值得深度挖掘。
然而,我国区域信息化建设尚未成规模,对医疗数据及数据源开放和共享化的程度相对较低。对此,2015年,我国国务院出台关于《促进大数据发展行动纲要》的政策,明确关于数据使用的总体要求。2016年又出台《关于促进和规范健康医疗大数据应用发展的指导意见》,正式将医疗大数据纳入国家发展,从而加速推进医疗大数据产业的形成和发展,一批与之相关的医疗数据企业如雨后春笋般增长。
除了政策支持外,资本对医疗大数据公司的信任也必不可少。我们扫描了98家明确披露融资信息的医疗大数据相关公司,据不完全统计发现,近年来有超过20家投资机构投资的医疗大数据公司超过两家及以上。
从我们统计的98家医疗大数据公司中,不难发现一个特征,即人工智能在医疗大数据领域的参与度非常之高。因为相比人脑,人工智能的优越性在于可以更高效地处理海量数据,迅速找到一些特征和规律,在图像识别上,人工智能的优越性表现的特别突出。人工智能可以利用庞大的医学知识库和数据库,建立医生的临床辅助决策系统,帮助医生进行诊断。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-12以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-11随着数字化转型的加速,企业积累了海量数据,如何从这些数据中挖掘有价值的信息,成为企业提升竞争力的关键。CDA认证考试体系应 ...
2025-03-10