医疗大数据飞速发展:人工智能优越性突显
医疗行业是典型的数据密集型行业,医疗信息数据一直是医疗健康领域最重要的核心。随着数据生成和共享的速度急速增加,医疗数据加速累积。IDC曾预测截至2020年全球医疗数据量将达到40万亿GB,大约是2010年的30倍之多。可以说,信息化和医疗数据的规模和质量推动了医疗健康的进步和发展。
而医疗大数据产业的发展是由价值医疗驱动的,也就是医疗服务质量与医疗成本的双赢,其潜在的价值空间非常巨大。医疗大数据产生于具体的应用场景,服务于居民、医疗服务机构、科研机构、公共健康管理部门,医疗保险管理机构以及商保公司等。
多种场景产生医疗数据
事实上,医疗大数据产生的场景很多,有来自医院、诊所、第三方检测机构、科研机构、社保部门、药店、互联网医疗公司终端等等与医疗相关的机构。我们将其分为主要的4个类别:
1、诊疗数据。这是患者在医院、诊所等医疗机构就医过程中产生的数据。一般包括电子病历,用药选择,生化、免疫、PCR等传统检测项目结果以及基因测序等新兴检测项目结果。其中随着近年来基因组学概念的普及,基因检测逐渐兴起,其产生的检测数据增长非常之快。与之诞生了一批相关创新型企业。
2、研发数据。医药器械研发企业、研发服务外包企业、科研机构等在研发过程中会产生一批研发数据,诸如医药研发过程中临床试验的数据,科研进展等等。
3、患者数据。这类数据是由患者自身的行为和感官产生的,采集的终端一般是可穿戴设备和各类网上医疗平台。比方说通过可穿戴设备收集的体征类的健康管理数据;网上挂号问诊、网络购药、医患病友交流等网络行为产生的数据等。
4、支付和医保数据。患者支付记录、报销记录、医药流通记录等等,一切与付费方相关的审核与报销记录都会产生相关数据。
五大应用场景的医疗大数据
具有“4V性”+“医疗性”
由此众多场景产生规模巨大的诊疗数据、患者行为感官数据、研发数据、支付医保数据等,构成了质量参差不齐医疗大数据,不仅具有大数据的“4V性”,即规模大(Volume)、类型多样(Variety)、增长快(Velocity)和价值大(Value),且具有医疗领域的多态性、时序性和隐私性,同时也具有不完整性和冗余性。
医疗大数据潜在的变现能力不同。一般来讲,我们主要将其应用在5大场景,分别是:
1、临床决策支持。用于例如病情早发现并及时干预,以及实现精准医疗,精准用药等。临床决策支持系统、基因检测等能够帮助医生提高医疗服务质量。
2、慢病及健康管理。这主要包括实时监控用户的身体状况;为用户实施个性化的健康管理方案;利用数据的健康管理降低重病发病率以减少医疗支出。这是基于慢病及健康管理数据库结合远程智能监护系统和可穿戴设备等帮助个人实现健康管理。
3、医疗支付。利用医疗大数据能够减少现有支付体系的压力,降低由病因不确定导致的医疗资源浪费,此外基于患者付费和疾病数据,结合健康管理能降低保险公司赔付的成本,帮助保险公司开发新产品和提高盈利率。当然通过药品流通数据能够优化医药流通环节从而降低医药成本。
4、医药研发。通过智能数据分析系统,能在医药研发过程中减少人力、时间、物力等投入,降低药品研发成本。同时基于疾病、用药等建立数据模型,预测药品研发过程中的安全性、有效性、副作用等。
5、医疗管理。通过数据整合分析,智能应用等帮助医院运营管理。可通过多家医院的数据,建立和完善区域及跨区域的疾病防控、妇幼健康、综合监督、食品安全、血液管理、分级诊疗等,实现医疗资源合理配置。
政策和资本助力,医疗大数据公司如春笋般增长
因而,医疗大数据一直是医疗领域最重要的核心,同时也是我们当前面临的短板。之所以如此认为,主要由当前我国医疗的现状所反应。对于人口基数巨大,却存在医疗资源浪费严重、紧缺和配置不合理,以及医疗支出增长过快和医疗保险发展乏力等问题,我国的医疗大数据的市场规模非常可观,保守估计将达到千亿级,医疗大数据的可应用场景也很丰富值得深度挖掘。
然而,我国区域信息化建设尚未成规模,对医疗数据及数据源开放和共享化的程度相对较低。对此,2015年,我国国务院出台关于《促进大数据发展行动纲要》的政策,明确关于数据使用的总体要求。2016年又出台《关于促进和规范健康医疗大数据应用发展的指导意见》,正式将医疗大数据纳入国家发展,从而加速推进医疗大数据产业的形成和发展,一批与之相关的医疗数据企业如雨后春笋般增长。
除了政策支持外,资本对医疗大数据公司的信任也必不可少。我们扫描了98家明确披露融资信息的医疗大数据相关公司,据不完全统计发现,近年来有超过20家投资机构投资的医疗大数据公司超过两家及以上。
从我们统计的98家医疗大数据公司中,不难发现一个特征,即人工智能在医疗大数据领域的参与度非常之高。因为相比人脑,人工智能的优越性在于可以更高效地处理海量数据,迅速找到一些特征和规律,在图像识别上,人工智能的优越性表现的特别突出。人工智能可以利用庞大的医学知识库和数据库,建立医生的临床辅助决策系统,帮助医生进行诊断。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31