大数据在汽车未来商业领域中九种机会,你占据哪一种
01 数据是金矿
人类历史长河中所有信息总量加在一起还没有当下两年时间所积累的多,而且这个数据量还在以两年时间翻一倍的速度在飞速发展,互联网给我们带来的巨变已经非常明显,大数据时代即将到来,届时的变迁将更是你我当下无法想象的。
当下已经开始的商业智能BI和商业分析BA将得到大发展,通过大数据即可以计算出股票的涨落,也可以计算出美国总统大选结果,还可以计算出你明天发生车祸的几率。大数据在汽车电商中的应用也将得以突显,当然,大数据的收集和分析、挖掘乃至于真正的可视化应用还需要从底层开始,才能让数据金矿的开掘全面推进。
在人类的历史长河中,直至工业革命才是一个分水岭,这之前人类的人均GDP一直停留在500美元左右,所谓的马斯洛陷阱不断发生而无法逾越。而工业革命之后才得以突破,劳动者的个体的价值也得以剧增,直至当下的人均GDP达到几万美金,这是机器创造升级和分工协作提升效率创造出来的价值。当下是互联网时代,连接无处不在更加便捷,让这个价值的创造更加便利更加高效,同时大数据在商业平台中让无数个个体的价值聚合产生更大的价值,也是大数据时代应该思考和应用的方向。
当然,大数据也是被误解的最深的一个专业词汇,主要原因还是这个词本身翻译就已然南辕北辙了,数据的价值并非仅仅只在大上,冗余数据再大也毫无价值。大数据真正的价值在它的深度、宽度和广度的取向上。比如汽车信息中的深度如这辆车的状况,行驶里程,维修保养情况,通过智能盒子OBD获取到的它行驶途中的胎压异常等等数据,那么宽度就如这个车主的驾驶习惯,行车路线和路况信息等,而广度就是要延伸为车主的个人嗜好和消费习惯了。经过深度挖掘的这些数据的聚合,也就可以实现智能商业,也就是所谓的BI,而绝非简单的车辆型号,年限和号牌,车主联系方式等低级数据叠加起来的冗余数据,这样的数据再大也不会直接产生价值(除非那些骗子海量发布信息,当然这种行为也会得到法律制约的),是需要深度挖掘才会有价值,也是汽车电商平台在数据整合和收集方面所应该运营的方向。
大数据对于汽车行业特别是品牌厂商和经销商来说意义重大,大数据的价值将更多体现在网络营销层面上。随着购车人群越来越倾向于通过网络方式来获取汽车资讯,各类汽车媒体成为消费者购车前最主要的信息来源,根据易观智库中国数字消费者行为分析系统ECDC的监测数据显示,各主流汽车媒体的日均访问次数已超过百万,最高的已经超过400万次。巨大的访问量带来的消费者属性、行为偏好、购买意向、购买价格等数据毫无疑问已经成为这些汽车媒体最有价值的信息资产,成为他们深入挖掘的目标产品,这些汽车消费者行为大数据如果能够被有效整合和分析,他们就能够成为汽车品牌厂商和经销商精准有效的营销方向性目标产品而量身定制,其商业价值不可估量。
往往传统企业的人没有互联网思维,非但不觉得互联网好,还反而认为对它们是障碍,就拿P2P模式的汽车金融来说,互联网直接触及他们的利益奶酪,他们如遇洪水猛兽般抵制。这个我们可以对比一下阿里旗下的蚂蚁金服与传统银行,蚂蚁金服可以几秒钟就完成一单存贷款业务,而传统银行的速度却是这个的几千倍,效率高下一目了然。往往一些做线下产品渠道后市场的更是抵制互联网,对外说做的是互联网,其实骨子里是在抵制,所以O2O或O+O最难线上和线下对接,那么大数据对于他们也就无从实现了。
在大数据的应用层面,在数据库中分散、独立存在的大量数据对于业务人员来说,只是一些无法看懂的天书。业务人员所需要的是信息,是他们能够看懂、理解并从中受益的抽象信息。此时,如何把数据转化为信息,使得业务人员(包括管理者)能够充分掌握、利用这些信息,并且辅助决策,就是商业智能主要解决的问题。如何把数据库中存在的数据转变为业务人员需要的信息?大部分的答案是报表系统。简单说,报表系统已经可以称作是BI了,它是BI的低端实现。国外的企业,大部分已经进入了中端BI,叫做数据分析。有一些企业已经开始进入高端BI,叫做数据挖掘,并且以可视化的方式呈现出来。而国内的绝大部分企业中的绝大部分还停留在最为初级的数据报表阶段。
未来,数据收集和分析能力的强弱可能决定了企业的核心竞争力。当每一个个体成为大数据构成中的一分子的时候,把自己也作为一个用户样本,真实洞察自身需求和行为,也能从价值观和行为习惯中推理出相呼应的价值信息,放之“我们”中进行匹配和佐证,也算为大数据贡献一个样本了。
02大数据洞察人性的隐秘需求
广义上说,任何从数据库中挖掘信息的过程都叫做数据挖掘,从这点看来,数据挖掘就是BI。但从技术术语上说,数据挖掘(Data Mining)特指的是:源数据经过清洗和转换等成为适合于挖掘的数据集。数据挖掘在这种具有固定形式的数据集上完成知识的提炼,最后以合适的知识模式用于进一步分析决策工作。从这种狭义的观点上,我们可以定义:数据挖掘是从特定形式的数据集中提炼知识的过程。数据挖掘往往针对特定的数据、特定的问题,选择一种或者多种挖掘算法,找到数据下面隐藏的规律,这些规律往往被用来预测、支持决策。
当年今日资本的徐新女士当年准备投京东的时候,刘强东把后台ERP系统打开给徐新看,虽然销售额只有5000万元,但每个月增长10%,京东商城当时还没钱打广告,可老客户一年会上来3次,这几组数据足以证明,用户喜欢这个网站。这组数据的信息量和推演逻辑,足以覆盖任何一份花哨的项目故事PPT。因为数据在说话,更因为用户行为累积成的数据信息足以挖掘出产品的可成长性、电商的趋势、盈利模式是否健康等核心信息。而大数据的来源其实是人,玩转大数据,其实是在挖掘人性需求。
我们可以再来看看下面这个故事,某即食通心粉品牌做了一个市场调研,他们获得了一个非常新鲜的发现,消费者在烹饪即食通心粉的时候会加上一点洋葱,于是体贴的通心粉厂家就发明了一个新产品,在即食调料包里为消费者加上一些洋葱。结果后来在实际销售时,没有加洋葱的通心粉还是比这个加进了洋葱的新产品卖得更好,这让市场研究人员百思不得其解。其实这里就隐藏了一个基于人性的洞察:家庭主妇在给家人烹制即食通心粉的时候,有一种没有尽到家庭主妇职责的内疚感,为了消除这种内疚感,她们会选择在烹饪通心粉时,加入一点自己准备的洋葱,表明这顿饭是自己精心准备的,自己不是一个偷懒的、不称职的家庭主妇,所以她们选择购买没有添加洋葱的即食通心粉。
至于人性的隐秘需求来说,有些是消费者挂在嘴上愿意和你说的,而大多潜藏在消费者潜意识里他们说不出来却又驱动他行为的因素,就需要消费者洞察,这是品牌跟消费者建立“有意义”关系所不可或缺的一个环节。绝大多数消费者洞察不是来自于量化的研究数据和书面的研究报告,而是来自于与消费者的直接、深度接触中,比如街头暗访、消费行为的观察、与目标人群的谈话等等更接地气、更原始的方法,而非一串串冷冰冰的数码符号、人群标签所能替代的。但微信、微博等社交媒体成为用户黏度最高的产品时,基于社交圈的用户原始需求也最有效地形成有价值数据。社交平台的信息分享对于个体用户有着强烈的需求煽动力,电商社交化立刻成为趋势。用户的兴趣点、社交图谱与购买转化形成的时间规律、价格规律、敏感词规律,通过萃取可梳理出一套电商营销方法论,在恰当的时间、恰当的社交平台、以恰当的卖点投放恰当的产品广告,触达用户,形成精细化营销。
03 汽车行业大数据应用的九个大方向:
一、消费者消费行为洞察在汽车营销领域的应用
未来10年汽车产业将会真正进入大数据时代,首先是汽车本身的全面数据化智能化,再者在汽车营销层面,特别是车主的行为数据化最为被车企看重。其他包括所有的驾驶操作及其每天的行为习惯,甚至于座椅的使用习惯都会形成相应的数据,还有就是以车为中心的数据化,零部件、车况、维修保养、交通、地理位置等信息都会形成庞大的数据被挖掘应用而产生价值。其次是汽车数据资产化,大数据可以创造巨大的价值,大数据将成为车企和车商的有效资产,于是这些数据将同其他资产一样为车企和车商们带来收益而变成他们的资产被应用创造更多的价值。再者是汽车产业智慧化,人和汽车可以连接互动,同时汽车产业大数据将促进形成更加智慧的汽车大数据产业,基于互联网汽车将构建起庞大的、多层级的汽车大数据生态商业。
曾经经常听到一些传统汽车制造商的人对互联网造车一向嗤之以鼻,他们认为汽车企业已经有一百多年的数据和经验的积累。其实,我们从大数据的角度思考一下,他们高傲的毫无道理,更显得无知者无畏了。原因很简单的,当下的大数据时代两年的时间积累就是人类有史以来的总和,那么单纯的一个汽车行业的数据积累,在大数据时代也许不需要几个小时就可以完成了,这不是危言耸听,而是真真切切的现实,不服都不行。那么在说说所谓的经验,人们在生产和生活中有太多的例证证实,经验没有多少是靠谱的,就如中医就是经验的积累所致,而中药的副作用有谁知道?未来的大数据时代是完全要靠数据支撑的,经验已经不能也不该在未来的商业模式的构建中做支撑,不然一定惨败。
当下,绝大部分车企还停留在委托营销机构和代理公司做广告投放,最终看效果怎么样,还停留在结果报告阶段,这种思路完全不是大数据的应用思路。大数据的思路应该是,需要在互联网的过程中去积累过程数据,特别是在社交开放平台上积累这些数据,几乎一切流程都是可视化的呈现,这个过程能细到让感兴趣的用户点击你的行为,进入你的目标网站,他的停留时间,他的行为轨迹,行为结果或者与他的交互等等信息皆可掌控,就如每一个在微博上对你的内容感兴趣的用户的所有行为,把这样的用户行为的全流程数据收集出来,才能算大数据的应用范畴。
二、智能车联网OBD远程诊断在情景电商领域的应用
未来通过人工智能AI和商业智能BI,就可以通过大数据实现的算法,计算出来用户自己都不知道的前置需求的,通过云端的推送及时解决用户之所急,实现电商化的变现就是所谓的未来的情景电商模式。比如充分智能化的车联网OBD云端的数据检索,可以检索到,通过车商安装的传感器收集到的数据源,这个数据源发送到云端,就可以检索到正在行驶的汽车是否有爆胎或者自燃的危险,这时云端就可以推送解决方案到用户的车辆或者用户的手机上面,及时规避将要发生的风险;再比如通过无人驾驶汽车自动或者默认的路线图指标数据,就可以计算出来这个用户下一步要干嘛,及时推送解决方案,同样可以实现用户的前置需求或者及早防患于未然,当然大部分车辆提前知道其行程,那么他们要通过的路段的下一个时段的交通流量也就一目了然了,预测下个时段交通数据将更有办法解决城市道路的堵车问题,这也是汽车智能化之后大数据应用的副产品,其实相关的智能化应用会多大我们当下想不到的程度。
三、驾驶行为大数据在车险领域的应用
我们再来看看大数据在汽车保险上的应用案例,汽车后市场的大数据应用,其实保险公司早有在做,而且很简单,那就是通过OBD或者其他的智能盒子来收集车主的驾驶行为数据,如果一个人从来不违章,那么给他的保险就可以打很低的折扣,如果对于经常违章发生车祸的车主,那么就可以拒保,不仅增进投保数量更能增进保险的质量。再者就是车辆的使用时间和闲置时间,可以做分时租赁提供数据。
我们可以看一下具体案例,Metromile公司利用汽车监控设备颠覆了定价模式,实现按驾驶里程收取保费的模式,自2012年6月产品推出,目前已经被数千位美国用户使用。它的里程定价模式是基于车载信息设备(汽车监控)的技术,通过用户安装的设备追踪行驶里程而缴纳保费。用户只需每月支付15-40美元的固定费用以及2-6美分/英里的使用费即可。操作时只要将赠送的节拍器安装到仪表盘就可以正常开车。它并不考量怎么开车,而关心开车距离。此类保险在服务行驶量不大、尚未充分服务的细分板块中有很大空间。平均计算,可为一位年行驶里程在10000英里的驾驶者节省40%的费用。
还有一些保险公司为客户提供新型商业解决方案。例如,美国利宝互助保险公司(Liber ty Mutual)为公司或大型车队提供GPS跟踪监控设备。企业用户将该设备安装在汽车上,可通过设备回传的里程数、车速、加速情况和位置等信息,帮助车队监控并改善司机驾驶习惯,进一步开展车辆安全管理,从而有效控制风险和保费决策依据,同样可以提升公司效率和用户的保费基数。
另外还有一些保险公司提供车辆盗窃找回及事故援助服务。例如,英国的Insurethebox,该公司将含有GPS、运动传感器、SIM卡和电脑软件的盒子装在汽车上,通过GPS技术追踪定位失窃车辆,协助用户找回。当盒子检测到车辆撞击或意外事故时,该公司会给用户打电话,确定用户人身安全。紧急情况下,还会呼叫应急救援部门参与救援。盒子里的数据亦可协助用户分析车辆损失情况和保费精算情况。
四、维保大数据在二手车评估领域的应用
专业的检测和评估一直是二手车市场发展的瓶颈,这里面的猫腻儿骗局环环相扣多到生手防不胜防的地步。随着二手车市场的进一步发展,一些原有的汽车专业网站也纷纷涉足这一领域,一些综合性的门户网站也开展了这一业务。网上卖车,最大的优势是避开中介,价格自己说了算,一般情况下,可以卖出比较理想的价钱。但是信息的不对称和市场成熟度不够,目前如人人车和瓜子二手车等也是赔钱赚不到吆喝,他们最近数据造假的底儿被揭开,让人们才谎言大悟,原来二手车不仅仅是所谓的专业评估师忽悠人,这些一向口碑良好的二手车电商平台也会忽悠人。那么,解决之道是什么呢?其实也很简单,只有有了两个方面的大数据的积累,这些问题就可以迎刃而解了。这两方面的大数据就是首先要有这辆车的维保数据,再者就是市场上相关车型的二手车成交的大数据,这两组数据综合对比就完全可以得到这款车的真实的价值评估,因为二手车和新车不同千车千貌自然就要千车千价,能做到真实的童叟无欺的价值评估,单纯靠评估师是远远不够的,因为人是最不靠谱的,再者评估师是谁给他们发工资就为谁说话的,这点我们想都不敢想下去了,所以说有了大数据无论商家还是被商家雇佣的评估师都无法欺骗到你了。
五、智能导航大数据在交通智能化领域的应用
前面我们谈到了大数据在交通领域的应用,特别是通过智能导航还可以提供更多层面的应用,为智能化交通提供更多的空间和可能。大数据的智慧交通存在多种优势,所以说交通的智能化是总体的大趋势,利用大数据技术和智能分析技术,整合城市管理的其他数据,将可以真正推动智慧交通的发展。基本上可以在四个方面得到具体的应用,一是提供城市道路的通行能力缓解交通压力;二是有效减少交通事故的发生几率;三是可以有力打击各类交通违章和违法行为;四是提供给车主最为直接时时的交通信息服务。
六、大数据在汽车共享新商业模式领域的应用
谈到共享经济模式我们就不能不谈汽车领域的共享模式,当然,当下的滴滴仅仅只是做的出行市场的共享模式,并非汽车产业的全部,仅仅只是一个领域而已。那么,既然谈到共享商业模式,我们就要从共享商业模式的根源谈起。共享经济模式不可能独立存在或者独立自我生长,而是需要多种模式的生态之下共生共荣的,也就是说,必须需要底层的大数据作为支撑的。就比如分时租赁模式就必须让车本身智能化,租车开车门都是自动实现的,通过手机APP就可以完成找车、开车门、驾驶车辆、支付费用和还车等等一系列交易动作,这期间不需要服务人员人工成本,极大地节约了成本支出,可以更快地让这个产业迅速占领市场份额,当然对一个新生事物来说,其绝对优势的商业模式才是它能否成行最根本的驱动力,方便用户又是这个驱动力的内核,让用户接受和最佳的体验也更是催生产业迅速扩张的根基。
事实上,共享商业模式不仅仅局限于消费领域,它的更高维度或者更能发挥其效能的还应该是非消费领域的共享,比如汽车后市场的技术共享,汽车制造技术的共享,甚至于各个行业的高端技术的共享,通过大平台和大数据这是可以实现的,不仅可以提升整个行业的智能化,更可以无限量提升各个行业的生产力水平,创造更多的商业价值。
七、行车记录仪大数据在交通领域的应用
有了智能行车记录仪之后,驾驶行为、车辆轨迹、交通路况就很容易获得了,如果这个行车记录仪与云终端联通的话,那么通过行车记录仪拍摄的实时路况的大数据就变得有价值,如果一个城市里有几十万甚至上百万辆车安装了这样的行车记录仪,且可实时上传所拍摄到的路况信息到云端,那么这个城市的所有路况信息的大数据就近在眼前了,他对其他车主也是最具价值的,同时由云端分享给需要实时路况信息的车主,甚至于未来预设导航目的地和行车路线后,预测下个时段的路况信息的数据结果都是可以通过云计算得出一个几乎真实的结果,这些大数据不仅可以为企业带来巨大的商业收益,更为汽车行驶和交通的智能化提供了最为基础的大数据来源。
八、大数据在汽车衍生及周边消费行为领域的应用
根据一个调研机构对奔驰奥迪和沃尔沃车主的上网行为追踪结果,通过大数据的分析表明,这些豪华车消费者对电影和真人秀的视频内容最为关注,而对在网上和手机上浏览电视剧和体育方面的视频相对较少。分析原因,一方面豪华车车主们没有这么多时间去追剧,另一方面更关注实时的体育文字类新闻,而直接去看体育节目视频回放或视频直播的相对较少。同时,不同品牌的潜在消费者在视频内容方面差异也较大,例如宝马潜在车主最喜欢看电影,沃尔沃的车主相对而言对电影兴趣较小,奔驰车主对真人秀最不感兴趣,而奥迪潜在车主对真人秀最感兴趣。
汽车大数据不仅可以满足用户出行、路况预测、用户和用户之间的交通信息;还可以将海量经过处理的数据提供给政府、社会,使公共部门通过数据分析和应用,进行交通大数据决策分析,对整个城市交通拥堵成因进行分析,对异常道路进行数据挖掘,进而改变交通状况;再者就是通过汽车大数据同样可以衍生至汽车周边的消费领域展开应用。比如,。
九、买车卖车用车维保大数据在造车领域的应用
当下的互联网造车一向被称为PPT造车,事实上,仅仅只是他们造车的理念和规划还存在PPT阶段,要以发展的眼光看待才好,不然就太急于评价,而过于着急一定看不见全豹。
事实上,利用买车卖车用车维保大数据在造车领域的应用的还是传统车企,4S模式就是这方面应用的最好的案例,4S包括整车销售(Sale)、零配件(Sparepart)、售后服务(Service)、信息反馈等(Survey),而最后这个S(Survey)信息反馈就是大数据的应用。虽然说传统车企的车型升级比较缓慢,但是他们的升级和改造或者开发新车型,这些大数据是最为重要的依据。再有一个事实更可以为这个的佐证,那就是3-5年以上的车过了保修期,大量的离开4S店维保,这给车企带来非常大的数据来源上的困扰,已经严重威胁到了他们更新换代和开发新车型的进程。
互联网的发展为汽车这一传统领域迎来了新的机遇,传统车企越来越多地将车联网、智能化等一系列新功能集中到汽车上,而除了传统车企的不断创新之外,互联网企业造车的风潮也不容小觑。在特斯拉、谷歌及苹果的造车理念引领之下,乐视超级汽车LeSEE无人驾驶概念车;智车优行将样车开到发布会现场;蔚来汽车与江淮汽车签署战略合作协议;车和家将自建车厂和电池厂,打造小而美的智能电动车等等,都是互联网造车的典范。既然是互联网造车,那就不单纯的是线下硬件的打造,更多的还是通过互联网与用户的参与积累大数据,为其造车提供具体的依据和在其车辆销售流通领域的参与的全过程,才是互联网造车的精髓。
04疯狂的汽车后市场
上面谈了很多的关于大数据在汽车领域的应用,我们再来看一下,当下被热炒之后又进入冰河时代的汽车后市场电商领域,这是一个大数据应用不尽成熟但又无法不依托于大数据才能崛起的行业。汽车后市场这是一个万亿级的市场,中国汽车工业协会数据,从2012年到至今,中国汽车后市场规模从2012年2490亿开始,逐年递增约1000亿,至今达7660亿,预计2016年年底将接近8000亿,两年之后,这个市场的总容量将轻松突破万亿大关。
这期间,市场形同于疯狂。从2009年开始,每年汽车后市场新成立的公司近乎成倍增长,到2014年达到顶峰,并在2016年出现大幅回落。截止2016年6月30日,2016年新成立公司数量还不及2015年的十分之一。2015年汽车后市场成立的创业公司共有362家,发生投资事件342起。这意味着,在2015年,此领域平均每天诞生一家公司,发生一次融资事件,速度惊人。平均每天会诞生1家公司,发生1次融资事件。
这期间投融资方面也很疯狂。2009-2016年6月国内汽车后领域融资事件共发生742起,其中2015年融资事件发生342起,为8年中的峰值,比2014年增加92%,却也在2016年首次出现下滑趋势,2016年上半年融资事件只有99起。2014-2016年3年间发生的投资事件数量进行统计后发现,国内汽车后融资事件80%以上都发生在早期,3年中天使轮及A轮项目共发生512起,而在后期依然能活下来的项目寥寥无几,甚至不足5%。D轮和E轮项目的总和只有9起,通过IPO退出的只有2家,分别是神州租车和一嗨租车。进入到D轮后所有企业中,只有神州专车最终在今年7月份挂牌新三板,其余的7家企业中,有3家已被并购,其中快的打车被滴滴并购、e代驾被神州专车并购、易到用车被乐视并购。
资本的疯狂让汽车后市场经历了一场热潮后,马上就迎来了冰河期。2015年下半年以来,确认倒闭的曾经融资成功的汽车后市场企业就有20多家,具业内人士估计汽车后市场O2O领域到2016年6月份截止,已经90%以上销声匿迹了。其中最具代表性的,是2016年以来两家已经融到B轮后的企业博湃养车和车风网相继倒闭。2016年4月5日,O2O洗车及养护平台博湃养车宣布破产倒闭,博湃曾在2015年初获得京东、易车1800万美元B轮融资,投后估值高达六亿美元。京东的导流对博湃的扩张也起到了至关重要的作用,使其不到一年便成为汽车养护行业的老大,然而极度的扩张和烧钱补贴让博湃迅速资金链断裂失去造血功能,不到一年便倒下了;2016年8月1日,汽车电商O2O平台“车风网”宣告倒闭,这曾是一家估值超过10亿的独角兽公司,而资金链断裂却也成为压倒车风网的最后一根稻草。
05大数据时代汽车后市场的质变
纵观汽车后市场领域在移动互联网时代的表现来看,汽车后市场产业的升级转型的最终落脚点无非要着眼于整个汽车零配件产业链的各类B2B商家,而汽车服务的所有环节都无法脱离线下,互联网能够改变的是线上的预约服务、汽车零部件适配、工时费用结算、网络投保等可以在线上操作的服务项目中的数据部分,剩下的保养、维修、换件、美容、洗车、定损实际操作的业务部分,仍旧是通过上门或者定点进行操作。所以说,汽车后市场是一个场景化被固化的服务行业,而非单纯的线上数据集合,其发展和颠覆的可能性也只有在大数据支撑下通过线上与线下的无缝连接加协同来实现才是可能性最高的路径。
从产业链来看,当前中国汽车后服务市场基本可分七个大类:包括养护、维修、改装、二手车、汽车配件、相关电商及金融保险等。这七个大类其实可以再做细分,譬如养护就包括洗车、美容、改装及零配件更换等服务。七大类汽车服务商家可以分为汽车服务、车联网相关、及工具社区等三种类型,其中汽车服务类型的服务商家分类最细,这些个细分服务领域都诞生了很多优秀项目。当前而言,汽车服务类的众多商家正在由重向轻变化,开始由产业链低层向中间层过度,做“服务汽车服务商的”服务商。这一类商家无论是做平台的还是做垂直服务的,在信息化方面都在向“大数据”过渡。
因为商家们发现汽车后市场服务中的竞争不在于维修人员的多少,更需要的是对原厂配件、品牌配件、工时、维修信息等数据的适配,谁的数据最多、最全、最详细,谁就最有竞争力,这意味着能够给予全品牌全车型服务数据匹配。举个例子,比如机油滤清器(简称机滤)需要与上门的客户车型匹配,可原厂机滤很贵,一般的O2O公司都使用曼牌,那曼牌的哪款机滤适合这个客户的车型呢?这就需要用数据库来做匹配支持,汽车后市场配件服务数据是必不可少的。在数据获取上,有数据积累的商家可以通过更多的渠道获得信息,没有积累的则会与专业的数据库企业进行合作。整个产业链对大数据服务都有重度需求,配件大数据最终是要融入汽车后市场产业链的所有环节的。以此说汽车服务行业的竞争进入到了数据竞争时代一点不为过,特别是电商平台,最终拼的都是大数据,大数据也才是他们平台的核心竞争力,所以说,掌握大数据者生,没有掌握大数据者都会死得很惨,这已经被无数个死去的O2O平台所验证,当然现在还在苟延残喘的也未必就掌握了大数据,只不过他们的钱还没烧光而已,但死是早一点迟一点的事情,而死却是必然的。
大数据能带给汽车后市场行业更多的在于商家对于用户以及业务的管理,这些数据具体到汽车后市场,则是对汽车后市场服务商家在沟通用户以及商业营销的综合性管理。尤其是车型、配件、品牌、保养等数据的灵活调取与应用方面,可以让商家近距离接触车主。甚至不用询问就能了解车主用车信息,可以进一步为车主提供一站式汽车服务解决方案,甚至于可以满足用户的前置需求而形成最为优势凸显的情景电商模式。所以,汽车后市场大数据尤其是配件通配数据,对于当前这个领域的商家来说是至关重要的,利用大数据来适配车后服务,是整个汽车后市场行业在服务模式发生质变的原动力。
06汽车后市场需要那些具体的大数据
市场中一个合格的数据服务提供商,应该做到以下几点:全品牌全车型全配件的数据信息,要有基于VIN的全车型全配件的通配架构,配件数据库包括:VIN码识别库、车型配置库、保养规则库、配件原厂件号品牌件号通配数据库等。当然,还必须具备与国内外汽车市场新车新和改款车型同步的数据库具有关联和同步的机制与能够同步的数据库结构。即时同步国内外零部件供应商的更新信息,能够保证最新车型的零部件填充数据库,达到同步更新的效果。而互联网化的API数据服务就算要通过SAAS模式,保证每一个与其合作的商家,都能通过API接口对接到并调取所需的数据库信息。这就如当下的地图制造商一样,作为最底层的应用,开放给全行业商家或者个人用户,汽车后市场大数据是基础设施应用,就如互联网之于网民,电力之于居民一样的道理。
如此规模是大数据库至少5年以上的数据库制作经验与积累,整个汽车后市场对数据的需求越来越大,同时也正在产生更大量的数据,数据处理经验以及数据库制作经验尤为重要。从全品牌到全车款,海量的数据挖掘与匹配,没有一个足够强大的运营团队是不行的,这样的团队至少要百人以上,因为最基础的零配件数据就至少要有5000-6000万条数之多。
面对万亿级的汽车后市场,大数据优化将成关键中的关键。2015年被认为是汽车后市场格局重构元年。根据公安部交管局公布的数据,全国有35个城市的汽车保有量超过百万辆,北上广深等10个城市则超过200万辆以上。然而,如此巨大的一块蛋糕,迄今为止却没有几家互联网上市公司出现。于是乎,汽车后市场开始迎来各方资本的青睐,业内预见,“互联网+汽车后市场”的大变革即将到来,而大数据、产品的地理属性和渠道的优化将成为胜负关键。
当下大家都知道汽车后市场是一块肥肉,抢滩登陆进来创业的很多,但是有一个重要的问题很多人还没有解决,那就是即便找到痛点但其解决方案还是有问题,痛点不是卖点,能否成为卖点为未可知,比如上门维修,解决不了的是上门前的精准诊断,而通过车联网智能硬件OBD可以很好的解决这个问题,但是OBD需要安装和数量优势才可以产生大数据,有了大数据才可以真正从底层颠覆修车的信息不对称的痛点。
从目前来看,汽车后市场领域的竞争是上来了,但还谈不上红海。大家集中在做汽配零件、汽车用品,还有就是汽车未来的自动驾驶系统。首先要懂这个市场,没有比较深的理解,做的模式很难成功。不能只做线上,线下同样很重要。不管是线上还是线下,提高效率、缩短流通环节从而解决行业痛点的项目,才能走得更远。
目前中国的平均车龄是3-4年,还不太需要保养,等到了6-7年时,汽车后市场会有一个非常高速的发展期。原来传统的汽配发展是有局限的,互联网大数据手段来了之后,越早进入这个市场越好。但他们路径都走偏了,于是白白烧掉了资本的几千亿居然没有任何效果,冰河时代到来的唯一好处是,他们沉寂后会寻找新的征途。就如最近太多的车企都在搞新能源,但国内的所谓的新能源无非就是电动车,事实上这也是一个误区,其实更是在生产垃圾车,为骗补贴他们生产的车只不过是走个过场而已,真正能够让消费者使用,还需要很长的时间研发和技术的突破,特别是电池技术的突破,事实上国内厂家多半都是使用的三星和LG等厂商的电池。再者即是电动车的未来不可能是一个独立存在的,不可能像传统燃油车一样独立占据市场的主体地位的,未来的汽车市场的车型一定需要具备智能化、互联网化,乃至新能源驱动,缺一不可的,如果单纯仅仅只做新能源或者说只做电动车的话,都会死得很惨的,他们想通过电动车弯道超车的策略一定会出师未捷身先死。汽车后市场的电商平台也一样,只有具备大数据积累的企业或者平台才有抓住下一波时机的机会。
汽车维修厂在互联网上买配件,效率会更高、成本也会更低,体验当然也会更好,它所改变和优化的是一个产业结构和商业模式。实际上,能够整合汽车后市场大数据的真正的平台,在业内并不多见。因为这首先是个苦力活,需要把先进技术和传统经验跨界融合。汽配行业很传统,产品分散、需求分散、商家分散,从业门槛也很低,但很难做大。
汽车后市场大数据产业互联网平台的发展过程也是产品逐步升级、迭代的过程。互联网的出现,行业出现“巨无霸”有了可能。但行内人知道,B2B汽配电商平台第一步就是建数据库。市面上有13万种在售和停售车型,一辆车的常用配件有2000多个,不同年款、不同排量的车型配件又不同,算下来就有近6000万基础数据,更会有近2.6亿个匹配关系。建里这样的数据库工作量超级的巨大,但只有突破这个天花板,才能建立完全没门槛、不需要任何专业知识就能准确选购配件的电商平台,整个产业的质变才会成为可能。
数据分析咨询请扫描二维码
数字化转型是企业提升竞争力和实现可持续发展的关键路径。面对快速变化的市场环境,以及技术的飞速发展,企业在数字化转型过程中 ...
2024-11-15CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13爬虫技术在数据分析中扮演着至关重要的角色,其主要作用体现在以下几个方面: 数据收集:爬虫能够自动化地从互联网上抓取大量数 ...
2024-11-13在数据分析中,数据可视化是一种将复杂数据转化为图表、图形或其他可视形式的技术,旨在通过直观的方式帮助人们理解数据的含义与 ...
2024-11-13在现代银行业中,数字化用户行为分析已成为优化产品和服务、提升客户体验和提高业务效率的重要工具。通过全面的数据采集、深入的 ...
2024-11-13在这个数据飞速增长的时代,企业若想在竞争中占据优势,必须充分利用数据分析优化其营销策略。数据不仅有助于理解市场趋势,还可 ...
2024-11-13数据分析行业的就业趋势显示出多个积极的发展方向。随着大数据和人工智能技术的不断进步,数据分析在各行各业中的应用变得越来越 ...
2024-11-13市场数据分析是一门涉及多种技能和工具的学科,对企业在竞争激烈的市场中保持竞争力至关重要。通过数据分析,企业不仅可以了解当 ...
2024-11-13数据分析与数据挖掘是数据科学领域中两个关键的组成部分,它们各有独特的目标、方法和应用场景。尽管它们经常在实际应用中结合使 ...
2024-11-13在如今这个数据驱动的时代,数据分析能力已经成为许多行业的重要技能。无论是为工作需要,还是为了职业转型,掌握数据分析都能够 ...
2024-11-13在如今这个数据驱动的时代,数据分析能力已经成为许多行业的重要技能。无论是为工作需要,还是为了职业转型,掌握数据分析都能够 ...
2024-11-13作为一名业务分析师,你肩负着将业务需求转化为技术解决方案的重任。面试这一角色时,涉及的问题多种多样,涵盖技术技能、分析能 ...
2024-11-13自学数据分析可能看似一项艰巨的任务,尤其在开始时。但是,通过一些策略和方法,你可以系统地学习和掌握数据分析的相关知识和技 ...
2024-11-10Excel是数据分析领域中的一款强大工具,它凭借其灵活的功能和易用的界面,成为了许多数据分析师和从业者的首选。无论是简单的数 ...
2024-11-10