零售商的大数据难题:技术外包还是内包
对于零售商来说,大数据是一把双刃剑。这些公司正在努力探索全方位的市场竞争,因为他们试图抵御像亚马逊公司这样的行业巨头,一些公司正在将大量资源部署到开发自己的大数据解决方案中,以试图与零售巨头进行竞争。
零售商面临的一个问题是他们需要内部构建还是应该将其外包给供应商。
随着软件即服务(SaaS)模式的普及,在企业环境中部署新的解决方案变得越来越简单和快速。这自然会导致行业不断增长的创新,因为传统的解决方案在短短几个星期内就容易被更新颖,更有效的解决方案所替代。
同时,大型零售商希望在公司内部开发解决方案的愿望,就像亚马逊在内部技术上投入大量资金,自己开发很多产品。然而,重要的是要意识到,并不是所有的产品和解决方案都可以或应该在内部建设。零售商应将基础设施视为数据平台,供应商以同样的方式进行创新,MAC和Android平台允许个别开发人员通过应用程序进行创新。
人们相信,云计算算法将在未来几年成为最常见的SaaS应用程序。把算法作为“核心竞争力”并将其发展局限于内部团队的零售商,只会扼杀技术创新,从长远来后将会落后。在这里列出其原因。
成本
伟大的算法解决方案需要核心人才。这些人才的竞争是十分激烈的,特别是数据科学。数据科学家通常具有计算机科学,统计学或数学方面的博士学位,其薪资超过15万美元。
由于市场上优秀的工程师和数据科学家的供应有限,这些工程师更多的是应聘初创公司或亚马逊,Google和Facebook等技术巨头的职位。不幸的是,大多数实体和在线零售商并不会成为顶尖工程师的目的地。因此,零售商必须通过支付更高薪金来弥补。
通过简单的数学计算表明,一个由20位数据科学家和工程师的团队可以将会让零售商每年花费400万美元的费用。而这只是招聘人才的费用,并没有包括来支持解决方案开发的任何基础设施的投资。相比之下,典型的SaaS解决方案每年的价格将低于100万美元(这可能是绝对的上限,传统的费用将低于50万美元)。通过与供应商合作,零售商可以节省大量的成本。
快速上市和灵活性
对于任何技术初创企业来说,快速推出市场是确定整体成功的关键。这包括内部技术的发展。从项目开始到启动,成功创建一个大数据解决方案可能需要2-3年的时间。虽然需要立即获得解决方案是一个亟待解决的问题,但技术的生命周期并不能绕过。两年的等待时间可能会造成一两个问题:公司新开发的解决方案在启动时几乎已经过时,或者试图领先于快速发展的技术环境,陷入无休止的重新设计周期中。
同时,随着基于云计算的SaaS模式的广泛应用,第三方解决方案的集成和部署速度从未如此快速。有些可以在短短的20天内集成和部署,这意味着尖端技术不断改进(算法在世界上最大的零售商不断优化和调整),快速满足即时需求。更重要的是,第三方供应商还提供了内部构建系统不具备的灵活性。删除和替换第三方SaaS解决方案非常简单,而不用担心昂贵的成本和内部斗争。
创新
技术和算法的进步非常快。纵观历史,竞争在创新中起着至关重要的作用。SaaS模型使其既易于部署又易于更换解决方案。因此,供应商正在不断创新,并面临改进的压力。当拥有内部团队,这个选择已经做出,因此没有竞争。一旦构建和部署解决方案,团队的目标就是维护和改进解决方案。但人们绝对不会知道内部团队的解决方案是否具有市场竞争力。
通过与第三方SaaS供应商合作,零售商能够在短时间内评估和部署许多尖端解决方案,同时投资更少。许多其他零售商都在使用这些解决方案,供应商经过不断的审查,得到客户的创新和改进。试图在内部构建这些解决方案不仅成本高昂而且进度缓慢,而且最重要的是限制创新,从而使企业的业务从长远来看并不那么灵活。
这并不意味着零售商应该将所有技术完全外包给供应商。当人们在大数据的背景下谈论技术时,它们指的是存储和处理数据的基础设施,以及解释数据和做出预测的算法。基础架构包括以安全,隐私保护的方式存储全方位的客户数据,如购买的优惠券,并使支持应用程序可访问该数据。
算法是基础设施之上的有效应用,利用数据来进行需求预测,流失预测,动态定价或产品个性化和定位。它们建立在数据基础之上,与操作系统之上的应用程序相同。因此,零售商必须投入内部资源和大量时间来建立安全,高效和可扩展的基础架构。
具有外部API和安全性(敏感数据加密)的正确基础设施将使企业能够利用供应商的尖端技术,不断创新。这将使企业将注意力和专业知识集中在核心业务功能上,而不是试图成为无关领域的专家。对于任何企业来说,资金,时间和研发能力都是有限的。成功的企业知道如何将这些资源放在正确的地方来获得成功。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“用户旅程分析”概念 用户旅程图又叫做用户体验地图,它是用于描述用户在与产品或服务互动的过程中所经历的各个阶段、触点和情 ...
2025-01-22在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-22在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31