可穿戴+大数据:未来的梦想在何方
可穿戴设备之所以吸引人,其中一个非常重要的因素就在于用户粘性。PC互联网时代促成了商业的繁华,与工业时代有个最大的区别就在于用户粘性被缩短,我们只要借助于互联网就能完成基于信息流的活动。而到了移动互联网之后,商业繁华被进一步推动,也就是我们当前所看到的移动互联网热潮,其中的关键原因也在于用户粘性,也就是说基于智能手机的移动互联网更深一步地与用户之间建立了粘性。
如果用一句话来形容,也就是说PC互联网的用户粘性是按小时计算,而移动互联网的用户粘性被缩短到了按分钟计算,这种用户粘性深度绑定就会释放出更多的商业行为,这也就是当前移动互联网的浪潮高于之前PC互联网浪潮的关键原因所在。而进入可穿戴设备时代,由于人与设备之间实现了更深入,可以说是无缝的连接,用户粘性从移动互联网的按分钟计算转变到了按秒进行计算。
可想而知,其所释放出来的商业价值必将超越当前的移动互联网与PC互联网,这也是为什么可穿戴设备从诞生那天开始就一直在争议中不断的飞速发展的原因。很显然的一个原因就是我们看到了当其所构建的用户粘性被进一步缩短之后,所释放出来的商业价值将超越当前由移动互联网所带来的改变。
而可穿戴设备之所以能释放更大的商业价值,关键就在于粘性建立背后所产生的大数据。可穿戴设备作为人体数据的流入与流出的双向渠道,其数据流出的背后隐藏的就是商业机会,而数据流入的背后隐藏的就是数据背后的商业呈现。可以说,基于可穿戴设备的大数据价值是目前全球范围所有从业者的一个共识,也是一些提出可穿戴设备免费这一观点人士的基础依据。
不过在我看来,目前谈可穿戴设备的大数据价值挖掘商业模式还为时过早。不可否认,未来可穿戴设备的核心价值在于大数据,硬件本身所能创造的价值非常有限,不论价格高低,都是一次性的价格表现形式。但其核心价值的大小则取决于大数据的延伸、挖掘,这也是我们所看到的谷歌眼镜没有有效地实现价值放大,其关键原因并不是硬件产品本身不可使用所造成,而是由于大数据不能有效支撑其价值放大。
而对于目前大部分的可穿戴设备从业者们而言,不论是希望借助于设备所收集的大数据进行价值挖掘,还是借助于大数据形成来放大可穿戴设备价值,都还需要一段路要走。至少从短期来看,盈利模式还是基于相对传统的硬件产品销售本身上,而不是依赖于可穿戴设备的大数据挖掘商业模式上。制约可穿戴设备大数据商业价值的主要原因有以下三方面:
1、数据过于碎片化。
由于可穿戴设备产品形态目前还处于一个快速裂变的过程,从智能眼镜、智能手表、智能手环、智能鞋子、智能饰品、智能鞋子到智能服装等。这种快速裂变的产品形态对于一个新兴产业而言,在市场上所呈现的就是产品碎片化的局面。一方面产品碎片化,另外一方面在产品碎片化的基础上创业者又处于分化状态,这就导致不同产品、不同品牌所采集到的数据未能实现互联、互通。而这种数据过于碎片化的结果,当然就使得所采集到的数据不是大数据,而是“小”数据,其价值显然难以有效挖掘。
2、市场普及度不高。
由于可穿戴设备是一个新兴的业态,不论是业内外,对于可穿戴设备产业的认知都还没有形成一个统一、清晰的认识。大众对于可穿戴设备的认知不仅模糊,而且在很大程度上可谓是陌生。受制于消费市场普及的因素,制约了可穿戴设备产业的市场普及,也就意味着可穿戴设备的用户使用量相对比较小众。从产品形态层面来看,目前通常局限于智能手表、智能手环。而就从智能手表、智能手环层面来看,目前还只是局限于一部分对新鲜科技事物感兴趣,或者是比较关注新兴事物的群体。正是由于市场普及程度的制约,很显然地就制约了产品的用户使用量,制约了产品的数据采集数量,制约了数据成为“大”数据的进程。
3、用户粘性不高。
可穿戴的本质是借助于可穿戴设备进一步增强人与智能设备之间的使用粘性,但从目前的实际情况来看粘住用户还需要一段路要走。其中最主要原因是两方面,一是受制于整个产业链技术的限制,不论是硬层面的芯片、传感器、电池、通讯等,还是软层面的算法、结果反馈等方面,都还处于探索阶段;另外一方面则是产业技术人才的缺失,尤其是我国目前从事于可穿戴设备产业的技术人才大部分都是从IT或通讯产业跨界而来。正是这两方面的因素,就导致了可穿戴设备在商业化的过程中,其产品都存在着不同程度的缺陷。最直接的表现就是当前用户普遍反映的监测不精准、使用体验不佳、监测结果无建议等,导致普遍用户在购买可穿戴设备佩戴很短的一段时间之后,就直接将其抛弃了,这也就意味着开发者所采集的数据基本难以成为有效、有价值的数据。
当然,影响可穿戴当前数据有效采集的因素多种多样,上述三方面因素是制约着可穿戴设备大数据是否能够有效形成与挖掘的关键因素。这三方面因素,可以说在短时间内还将会伴随着整个产业的发展继续存在着,也就意味着在短期内将难以得到有效地改善。因此,对于可穿戴设备产业的创业者们而言,目前距离可穿戴设备大数据价值的梦想还有一段路,这个梦想在短期内还难以实现。而当前最现实可行的并不是将自己的商业模型建立在大数据的价值梦想上,而是依托于可穿戴设备本身的产品销售获取盈利。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在职场上,拍脑袋做决策的时代早已过去。数据分析正在成为每个职场人的核心竞争力,不仅能帮你找到问题,还能提供解决方案,提升 ...
2024-12-24Excel是数据分析的重要工具,强大的内置功能使其成为许多分析师的首选。在日常工作中,启用Excel的数据分析工具库能够显著提升数 ...
2024-12-23在当今信息爆炸的时代,数据分析师如同一位现代社会的侦探,肩负着从海量数据中提炼出有价值信息的重任。在这个过程中,掌握一系 ...
2024-12-23在现代的职场中,制作吸引人的PPT已经成为展示信息的重要手段,而其中数据对比的有效呈现尤为关键。为了让数据在幻灯片上不仅准 ...
2024-12-23在信息泛滥的现代社会,数据分析师已成为企业决策过程中不可或缺的角色。他们的任务是从海量数据中提取有价值的洞察,帮助组织制 ...
2024-12-23在数据驱动时代,数据分析已成为各行各业的必需技能。无论是提升个人能力还是推动职业发展,选择一条适合自己的学习路线至关重要 ...
2024-12-23在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19在数据分析领域,尽管行业前景广阔、岗位需求旺盛,但实际的工作难度却远超很多人的想象。很多新手初入数据分析岗位时,常常被各 ...
2024-12-19入门数据分析,许多人都会感到“难”,但这“难”究竟难在哪儿?对于新手而言,往往不是技术不行,而是思维方式、业务理解和实践 ...
2024-12-19在如今的行业动荡背景下,数据分析师的职业前景虽然面临一些挑战,但也充满了许多新的机会。随着技术的不断发展和多领域需求的提 ...
2024-12-19在信息爆炸的时代,数据分析师如同探险家,在浩瀚的数据海洋中寻觅有价值的宝藏。这不仅需要技术上的过硬实力,还需要一种艺术家 ...
2024-12-19在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2024-12-19阿里P8、P9失业都找不到工作?是我们孤陋寡闻还是世界真的已经“癫”成这样了? 案例一:本硕都是 985,所学的专业也是当红专业 ...
2024-12-19CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17