京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据分析:人类正在变成七秒鱼还是三秒男
如果存在上帝或者三体人的话,他们会不会也怀着类似的视角看现在的人类?他们会不会觉得人类也是七秒鱼或者快进快出的三秒男?
让我产生这个想法的是最近接连不断的热点事件,它们都一夜之间刷屏而又快速衰落:血友病吧、百度魏某、口腔科主任被砍死、人大雷某……在上一个事件还没有水落石出的时候,人类也带着昂扬的情绪奔向了下一个事件,好像“前任”不存在而成为路人,真是“把每一次都当成初恋般投入”。而且不仅仅是庸俗大众的社交网络如此健忘,连号称聚集了世界上最聪明人类的股市也变得疲劳,经历如此公共信任危机的百度,股市对其的反应也是不温不火,远不如早些年公关危机引发的大跌。(下图列举了百度在今年内遭遇的几次重大公共危机以及其后一两年内股价的下跌幅度)
于是迸发出念头:对大众的记忆力及专注力做一次定量研究。
考虑到大部分人都不会对基础方法论感兴趣,只能简述之。有兴趣或者有异议的,欢迎私信。
研究方法。利用百度指数,观测某热点事件从兴起到衰落的过程:从发生到高潮所需的时间(蹿红期),以及半衰期、80%衰期和90%衰期(从峰值衰落到x%所需的时间)。以及将两者的总和作为热点事件的持续期。
研究对象。选取从2009-2015年间的三大类型事件,国内十大灾难、十大安全事故以及十大食品安全事件。以这三大类事件作为研究对象的主要理由如下:可比性和稳定性强,政府每年会持续发布相关报告及排行榜;容易避开黑天鹅(比如:天涯或水木的那种全民爆款可以吵架数周,今天男主发文,明天女主反击,然后男二号女二号悉数登场,然后亲友团跟进)
(注:许多评论在谈非市场原因干扰了百度指数的发展。其实这个因素在设计之初就有考虑,因此选择的事件,都是权威政府机构在年末评出的本年度十大事件。另外,如果单看无法掩饰的十大自然灾害,其实趋势也是雷同的。)所研究的热点大致图形及关键指标如下图。
先说结论:热点事件的蹿红期及衰落期都在急速下降;某种意义上,说明大众的专注力或记忆力进一步降低。换成人话就是:热点,来得更快去得也更快;大家都在成为快进快出的三秒男,不要再嘲笑只有七秒记忆的鱼类了。
再说猜想:技术的发展让热点更容易到达全民,同时也将大众的专注力进一步碎片化,上一个热点会容易被下一个热点迅速掩盖,所谓“长江后浪推前浪,前浪被埋在沙滩上”。
下图是热点事件持续时间的平均值及中位值变化图(2009-2015年)。很明显,热点事件的持续时间逐年缩短。站在今天,热点事件从发生到衰减到峰值的10%,只需要不到7天。难怪互联网大佬对于各种恶性事件,轻易摆出“Who cares!”的傲慢态度。
注1:持续时间,从发生到峰值再到衰减到峰值x%并稳定在x%以下整个过程所需的时间注2:为了避免黑天鹅时间的影响,采用平均值和中位值
同时有趣的是,跌幅最大的时间段是在2010-2012年,而这恰好是智能手机大幅普及的时间段,而智能手机以及其衍生的移动互联网生态最能提高信息的传播速度。同时在这段时间,3G/4G用户也大幅攀升,在基础架构和流量上也为信息的快速传播做好了充分的准备。
下图是热点事件蹿红时间的平均值及中位值变化图(2009-2015年)。均值从接近4天已经减少到不到2天,下降幅度最大的时间段仍然是2010-2012年,这个数据更容易让人相信:科技及设备的进步,让大家获取热点的速度加快,而导致热点蹿红的速度也在加快。
下图是热点事件衰减x%的衰减时间的平均值及中位值变化图(2009-2015年)。总体趋势仍然是下降。站在今天,热点事件从火焰到海水(峰值的10%),很可能只需要4天左右。
注1:衰减时间,从峰值到衰减到峰值x%并稳定在x%以下整个过程所需的时间
下图是热点事件的峰值次日留存图(2009-2015年),其中次日留存=峰值次日百度指数/峰值百度指数x100%。这个指标更能反映大众瞬时对于热点事件的衰减度。从曲线的变化趋势来看,它也是在不断下降的。站在今天,对于再大的热点,峰值的第二天,关注度就能衰减到峰值的45%左右。
至于以上各指标的标准方差(SD)及相对标准方差(RSD),计算结果并没有显示太多的规律及趋势,就不赘述了。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03