平安口袋银行获评年度最佳APP 大数据促零售战略转型
10月27日,由易观主办的“易观A10大数据应用峰会”在北京举行。凭借出色的金融创新能力和大数据在银行用户运营的应用,平安口袋银行将易观之星年度评选的“2017年最佳APP”奖项揽入囊中。作为国内一年一度的大数据盛典,易观A10峰会进行的易观之星2017年度评选是国内共识性和专业性于一体的奖项活动。
活动现场,平安银行(000001,股吧)零售网络金融事业部总裁李明作为特邀嘉宾,参与了“用户经营”论坛的演讲。演讲中李明谈道:“在大数据时代的背景下,平安银行致力于将行内系统底层数据全面打通,对客户数据进行全面收集并进行有效整合,对不同的客户制定不同的产品策略、营销策略及服务策略,制定精准经营方案。同时,不断完善内部数据标签体系,每个客户标签最多达到2000个,从而对银行老客户进行精细化运营。通过大数据平台经营覆盖全量客户。截止目前,平安银行新客户的户均资产比去年提升70%,存量零资产和低于1万元的低资产客户1-9月为全行贡献800多亿的新增资产。对标同业,平安银行2017年前三季度关键指标(存款、贷款、AUM)增速在股份制银行中均位列第一。”
平安银行以“大数据基础能力建设”、“AI基础能力建设”、“基础服务能力建设”3大基础建设作为基石,将银行内部各系统的底层数据全面打通,多维度对客户数据进行收集并有效整合,使其得以在客户经营、管理决策、市场获客及风控流程等领域被有效应用。比如本次获得“2017最佳APP”奖的平安口袋银行更是运用“人工智能+大数据”在4.0版本中,推出了平安口袋银行智能投顾,能根据客户的交易记录与风险偏好,为客户提供个性化的产品投资组合方案。同时,口袋APP还能对客户行为的大数据分析,可做到预测每一个客户最可能要使用的下一个功能或产品,并通过APP推送、呈现,实现“千人千面”。让客户能在平安银行口袋银行新版中充分感受到智能化、个性化的酷炫体验。
截至2017年9月末,平安银行零售AUM余额突破万亿,贷款余额7400余亿,存款余额也突破了3000亿元,这样庞大的零售数据若没有大数据报表平台的支持,就无法实时准确有效的获取并加以分析利用。李明表示,平安银行自行开发出多套数据报表,通过报表核心功能,做到经营业绩T+0快速可视化,并通过移动化设备实时传达,让管理者及时了解监控业绩情况,并通过邮件分享及订阅,将有效数据及时传达下发。报表核心功能还包括明细数据下载,让管理者能够有充足数据进行分析,助力决策制定。
此外,平安银行对创新媒体投放模式进行积极探索,深度挖掘行内数据,在内部建立用户标签体系,为客户标记年龄、性别、浏览购买行为、资产、业务类别等标签。之后,进一步通过IdMapping找到平安银行用户在合作媒体上的行为数据,例如浏览行为、兴趣标签等等,细化客户画像。最后,再利用大数据服务公司提供的用户线下行为数据、支付数据等,进一步完精准善客户画像。依托行内行外多方数据,建立数据模型,挖掘潜在客户,同时,加深与媒体方的深度合作,针对目标用户精准投放,再返回转化数据,优化模型。对比传统的媒体投放获客效率提升65%以上。
当下,欺诈风险日益呈现出复杂化、高科技化,李明在现场还介绍了平安银行“人工智能+大数据”构建的企业级的反欺诈体系。李明表示,平安银行通过对“事前、事中、事后”全流程进行反欺诈监控,即在欺诈行为事前、事中、事后各个环节中通过结合黑名单和各类征信资源、常用设备和习惯表、对关联欺诈进行挖掘、欺诈聚类和图案挖掘。利用人脸识别、经纬度定位、设备指纹、声纹识别等AI技术做到链式网络分析甄别欺诈用户。同时,大数据还深入运用到企业级反欺诈的各个模块,打通借记、信用,助力科学决策。据悉,平安银行通过运用这些有效的手段,仅在2016年一年间拦截案件就达到了50000余起,防堵金额近3亿元人民币。并且,截至2017年三季度,平安银行在零售贷款额增长的同时,零售贷款额不良增额、不良率实现“双降”。其中信用卡不良率1.18%,较上年末下降0.25个百分点。
精彩多样的金融科技创新的背后,是平安银行正渐入佳境的“智能化零售转型”。围绕“科技引领、零售突破、对公做精”三大核心策略,平安银行不断着力提升大数据的应用能力,凭借科技力量助推战略转型升级,全力打造以“SAT(社交+移动应用+远程服务)+智能主账户”为核心的零售银行服务体系,并对口袋银行APP进行精耕,运用高科技+大数据,为客户倾力打造“更懂您”的零售智能银行。
数据分析咨询请扫描二维码
数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20统计学专业的就业方向和前景非常广泛且充满机遇。随着大数据、人工智能等技术的快速发展,统计学的重要性进一步凸显,相关人才的 ...
2024-11-20