一、季节性分解(分析-预测-季节性分解)
“季节性分解”过程可将一个序列分解成一个季节性成分、一个组合趋势和循环的成分和一个“误差”成分。此过程是对统计方法I(也称为比率与移动平均数方法)的实现。
1、示例。科学家想要对特定气象站的臭氧层每月测量结果进行分析。目标是确定数据中是否存在任何趋势。为了揭示真实趋势,由于季节性影响,科学家首先需要考虑所读取资
料中的变异。可使用“季节性分解”过程来删除任何系统性的季节性变化。然后对季节性调整序列执行趋势分析。
2、统计量。一组季节性因子。
3、数据。变量应为数值型。
4、假设。变量不应包含任何内嵌的缺失数据。至少必须定义一个周期性日期成分。
二、模型(分析-预测-季节性分解)
1、模型类型。“季节性分解”过程提供了用于对季节性因子建模的两种不同方法:乘法或加法。
1.1、乘法.季节性成分是一个因子,用来与经过季节性调整的序列相乘以得到原始序列。实际上,“趋势”会评估与序列的总体水平成正比的季节性成分。无季节性变动的观察值的季节性成分为1。
1.2、加法.将季节性调整项加到到季节性调整的序列以获取观察值。此调整尝试从序列中移去季节性影响,以查看可能被季节性成分“掩盖”的其他兴趣特征。实际上,“趋势”会评估不依赖于序列的总体水平的季节性成分。无季节性变动的观察值的季节性成分为0。
2、移动平均权重。“移动平均权重”选项允许您指定在计算移动平均数时如何处理序列。这些选项仅在序列的周期为偶数时才可用。如果周期为奇数,则所有点的权重都相等。
2.1、所有点都相等.使用等于周期的跨度以及所有权重相等的点来计算移动平均数。如果周期是奇数,则始终使用此方法。
2.2、按0.5对端点加权.使用等于周期加1的跨度以及以0.5加权的跨度的端点计算具有偶数周期的序列的移动平均。
三、保存(分析-预测-季节性分解-保存)
“季节性分解”过程创建了四个新变量(序列),并且每个指定的序列都带有以下三个字母的前缀:
SAF。季节性调整因子。这些值指示每个周期对序列水平的影响。
SAS。季节性调整序列。这些值是在删除序列的季节性变化之后获得的。
STC。平滑的趋势循环成分。这些值显示序列中出现的趋势和循环行为。
ERR。残差或“误差”值。这些值是在从序列中删除季节性、趋势和循环成分之后保留的。
来CDA学业务数据分析师,SPSS理论结合实战进行项目数据分析,助你成为从事数据采集、清洗、处理、分析并能制作业务报告、提供决策的新型数据分析人才,点击了解课程详情!
数据分析师一定要了解的大厂入门券,CDA数据分析师认证证书!
CDA(数据分析师认证),与CFA相似,由国际范围内数据科学领域行业专家、学者及知名企业共同制定并修订更新,迅速发展成行业内长期而稳定的全球大数据及数据分析人才标准,具有专业化、科学化、国际化、系统化等特性。
同时,CDA全栈考试布局和认证体系已得到教育部直属中国成人教育协会及大数据专业委员会认可,并由为IBM、华为等提供全球认证服务的Pearson VUE面向全球提供灵活的考试服务。
报名方式
登录CDA认证考试官网注册报名>>点击报名
报名费用
Level Ⅰ:1200 RMB
Level Ⅱ:1700 RMB
Level Ⅲ:2000 RMB
考试地点
Level Ⅰ:中国区30+省市,70+城市,250+考场,考生可就近考场预约考试 >看看我所在的地哪里报名<
Level Ⅱ+Ⅲ:中国区30所城市,北京/上海/天津/重庆/成都/深圳/广州/济南/南京/杭州/苏州/福州/太原/武汉/长沙/西安/贵阳/郑州/南宁/昆明/乌鲁木齐/沈阳/哈尔滨/合肥/石家庄/呼和浩特/南昌/长春/大连/兰州>看看我所在的地哪里报名<
报考条件
业务数据分析师 CDA Level I >了解更多<
▷ 报考条件:无要求。
▷ 考试时间:随报随考。
建模分析师 CDA Level II >了解更多<
▷ 报考条件(满足任一即可):
1、获得CDA Level Ⅰ认证证书;
2、本科及以上学历,需从事数据分析相关工作1年以上;
3、本科以下学历,需从事数据分析相关工作2年以上。
▷ 考试时间:
一年四届 3月、6月、9月、12月的最后一个周六。
▷ 报考条件(满足任一即可):
1、获得CDA Level Ⅰ认证证书;
2、本科及以上学历,需从事数据分析相关工作1年以上;
3、本科以下学历,需从事数据分析相关工作2年以上。
▷ 考试时间:
一年四届 3月、6月、9月、12月的最后一个周六。
数据科学家 CDA Level III >了解更多<
▷ 报考条件(满足任一即可):
1、获得CDA Level Ⅱ认证证书;
2、本科及以上学历,需从事数据分析相关工作3年以上;
3、本科以下学历,需从事数据分析相关工作4年以上。
▷ 考试时间:
一年四届 3月、6月、9月、12月的最后一个周六。
(备注:数据分析相关工作不限行业,可涉及统计,数据分析,数据挖掘,数据库,数据管理,大数据架构等内容。)
——热门课程推荐:
想学习PYTHON数据分析与金融数字化转型精英训练营,您可以点击>>>“人才转型”了解课程详情;
想从事业务型数据分析师,您可以点击>>>“数据分析师”了解课程详情;
想从事大数据分析师,您可以点击>>>“大数据就业”了解课程详情;
想成为人工智能工程师,您可以点击>>>“人工智能就业”了解课程详情;
想了解Python数据分析,您可以点击>>>“Python数据分析师”了解课程详情;
想咨询互联网运营,你可以点击>>>“互联网运营就业班”了解课程详情;
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
如何构建数据分析整体框架? 要让数据分析发挥其最大效能,建立一个清晰、完善的整体框架至关重要。今天,就让我们一同深入探讨 ...
2024-12-27AI来了,数分人也可以很省力,今天给大家介绍7个AI+数据分析工具,建议收藏。 01酷表 EXCEL 网址:https://chatexcel.com/ 这是 ...
2024-12-26一个好的数据分析模型不仅能使分析具备条理性和逻辑性,而且还更具备结构化和体系化,并保证分析结果的有效性和准确性。好的数据 ...
2024-12-26当下,AI 的发展堪称狂飙猛进。从 ChatGPT 横空出世到各种大语言模型(LLM)接连上线,似乎每个人的朋友圈都在讨论 AI 会不会“ ...
2024-12-26数据分析师这个职业已经成为了职场中的“香饽饽”,无论是互联网公司还是传统行业,都离不开数据支持。想成为一名优秀的数据分析 ...
2024-12-26在数据驱动决策成为商业常态的今天,数据分析师这一职业正迎来前所未有的机遇与挑战。很多希望转行或初入职场的人士不禁询问:数 ...
2024-12-25数据分析师,这一近年来炙手可热的职业,吸引了大量求职者的注意。凭借在大数据时代中的关键作用,数据分析师不仅需要具备处理数 ...
2024-12-25在当今数字化变革的浪潮中,数据分析师这一职业正迎来前所未有的发展机遇。回想我自己初入数据分析行业时,那种既兴奋又略显谨慎 ...
2024-12-25在当今信息爆炸的时代,数据已经像空气一样无处不在,而数据分析则是解锁这些信息宝藏的钥匙。数据分析的过程就像是一次探险,从 ...
2024-12-25在职场上,拍脑袋做决策的时代早已过去。数据分析正在成为每个职场人的核心竞争力,不仅能帮你找到问题,还能提供解决方案,提升 ...
2024-12-24Excel是数据分析的重要工具,强大的内置功能使其成为许多分析师的首选。在日常工作中,启用Excel的数据分析工具库能够显著提升数 ...
2024-12-23在当今信息爆炸的时代,数据分析师如同一位现代社会的侦探,肩负着从海量数据中提炼出有价值信息的重任。在这个过程中,掌握一系 ...
2024-12-23在现代的职场中,制作吸引人的PPT已经成为展示信息的重要手段,而其中数据对比的有效呈现尤为关键。为了让数据在幻灯片上不仅准 ...
2024-12-23在信息泛滥的现代社会,数据分析师已成为企业决策过程中不可或缺的角色。他们的任务是从海量数据中提取有价值的洞察,帮助组织制 ...
2024-12-23在数据驱动时代,数据分析已成为各行各业的必需技能。无论是提升个人能力还是推动职业发展,选择一条适合自己的学习路线至关重要 ...
2024-12-23在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19