大数据融合彰显价值 跨界链接产业变革
12月7日电 5日,由国家发改委牵头组织的“中国数据创新行”主要活动——2017中国国际大数据挖掘大赛复赛在北京举行。复赛现场,来自江苏的“心脏康复大数据平台”项目正在台上为专家评委们带来精彩的路演,并博得阵阵掌声。
作为全国首个数据挖掘的国际性赛事,从今年3月赛事启动至今,已经吸引了全球19个国家和地区的万余支项目团队报名参赛。经过评委专家精心筛选,有200支项目入围复赛。据了解,大数据挖掘大赛在结束北京的复赛单元后,将在贵阳举行总决赛暨颁奖礼。
赛事评委、清华大学数据科学研究院执行副院长韩亦舜在纵览复赛项目后表示,大数据技术的渗透融合,催生了新的行业与领域,也给更多的传统行业带来了新生机。“数聚华夏 创享未来”,通过技术引领、深度融合提高实体经济发展质量,是新时期的重要探索方向,同样是本次复赛的重要主题。
数据融合 深挖“跨界”富矿
据“心脏康复大数据平台”项目负责人高锐介绍,项目通过案例大数据智能管理(Big Case)、数字心肺步行试验(DCW)、康复训练和检测设备(CTIM)等核心技术为患者提供心脏康复评估、处方、训练监测等心脏康复全流程解决方案,实现三期心脏康复的无缝对接。“我们以临床案例为基础,首创案例大数据智能管理系统,根据病人数据、健康数据自动进行分析,来提出处方建议、知识推送、服务组织,能极大程度降低失误率。”
来自深圳的“城市交通大数据在线检测与动态仿真系统”项目同样也是数据融合与挖掘利用的典型案例。项目主讲人周勇告诉记者,他们正致力于打造一个面向精细化管控和全方式智慧出行的实时在线仿真系统。系统基于移动车辆GPS、手机信令、地磁流量、视频图像等动态大数据和静态数据的多源融合,通过现实交通系统与虚拟交通系统的互动学习,以动态OD估计、中微观交通流仿真为核心,结合无人机航拍与图像识别技术对驾驶行为参数的标定,实现车道级的动态仿真与高精度的实时在线推演。目前,项目已经在深圳市福田区、新洲路和深南大道等案例中实现了深度应用。
“如何融合多元数据资源,跨越产业转型升级壁垒?这些项目给出了亮眼的答案。项目通过挖掘潜在于多种产业中的多类型数据,让大数据技术与产业发展得到深层的融合。”赛事评委、赛仕软件研究开发(北京)有限公司总经理刘政认为,多个参赛项目的出现正是我国大数据与全产业深入融合发展的具体体现。
比赛现场,各项目选手紧扣大赛主题“唤醒沉睡的数据”,从平台搭建、技术创新、数据有效利用、应用实现等多个方面,全面展现了数据融合的新前景和大数据发展的新进程。
数据挖掘是数据应用的核心,是发现新应用、创造新价值的关键,是数字经济最核心的动力,而融合则是全面激发大数据价值的最佳途径。赛事评委、TCL股权投资有限公司董事总经理游浩认为,“互联网+是大数据应用的幼年期,从技术、数据、人才、资金等资源匹配程度来看,目前大数据已经进入全面融合的新阶段探索。”
数据渗透 成为“转型”支点
多位参赛选手表示,吸引他们参赛的,是组委会提供的一系列政府开放的数据源,这其中包括14个政府开放数据平台的11600多个数据集,1600多个数据接口。“数据就是生产资源。我们的项目涉足领域广泛,得到更多领域数据的支持,才能够进一步加速应用与多领域的融合开发和完善。”
“共享开放是大数据应用的重要基础,共享的同时数据的价值也可以无限放大,通过多种形式的开发得到全方位渗透,这是数据开放的重要目的,甚至是大数据发展的重要落脚点。” 云上贵州大数据产业发展有限公司首席技术官秦晓东曾在大赛启动仪式上表示。
赛事评委、清华大学数据科学研究院执行副院长韩亦舜在分析大数据与全产业融合趋势时表示,党的十九大报告提出加快发展先进制造业,推动互联网、大数据、人工智能和实体经济深度融合,为传统行业与大数据全面融合指明了方向。本次大赛的项目从整体看,比往届赛事项目更为成熟,在数据的挖掘、分析等技术层面更为先进,尤其重视通过数据融合与渗透,在多行业多领域找到痛点解决方案或行业转型升级策略。
以此为视角,从大赛初选中脱颖而出的复赛项目不乏新颖之处。
号称“24h无人便利店”的“X空间”项目以其新颖的商业模式和便捷的购物体验吸引着各界的关注。项目负责人刘霏介绍,除了无人的特点之外,“X空间”作为线下物联网终端,将收集用户基本信息及消费数据,依靠大数据挖掘结果实现精准营销及供应链精细化管理。据了解,该项目已落地北京、长沙、青岛、汕头,并获得了市场的认可。
赛事组委会负责人告诉记者,通过赛事,引导大数据的纵向探索与全面融合,以比拼和选拔的方式,为优秀项目提供展示平台和融资机会,真真切切地为大数据行业发展做实事,是赛事的重要责任和使命。
据悉,本月晚些时候将举行2017中国国际大数据挖掘大赛总决赛及颁奖礼,这也将是“中国数据创新行”活动的收官之战。
数据分析咨询请扫描二维码
数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20统计学专业的就业方向和前景非常广泛且充满机遇。随着大数据、人工智能等技术的快速发展,统计学的重要性进一步凸显,相关人才的 ...
2024-11-20