
R语言编程基础篇(1)
1. 建立多维数组
array(1:36, dim = c(2, 2, 3, 3))
2. 使用list.files函数遍历文件夹中的文件
比如列出当前工作目录下的所有文件
list.files(getwd())
[1] "1.pdf" "10plots.pdf"
[3] "140408696.txt" "1plots.pdf"
[5] "2plots.pdf" "3plots.pdf"
还可以设置正则表达式来过滤文件
列出当前工作目录下所有的R语言源代码文件
list.files(getwd(),pattern = '*.[R|r]$')
[1] "Ask.R" "gg.R"
3. 用sciplot包的画boxplot图
#加载数据
library(MASS)
cab<-data.frame(cabbages)
cab[1,]
library(sciplot)
bargraph.CI(Cult, HeadWt, group =Date , data =cab,
xlab = NA, ylab = NA, cex.lab = 1.5, x.leg = 1,
col = "black", angle = 45, cex.names = 1.25,
density = c(0,20,100), legend = TRUE,ylim=c(0,5))
box()
bargraph.CI(Date,HeadWt, group =Cult , data =cab,
xlab = NA, ylab = NA, cex.lab = 1.5, x.leg = 1,
col = "black", angle = 45, cex.names = 1.25,
density = c(0,20), legend = TRUE,ylim=c(0,5))
box()
在这个boxplot中,不用自己计算均值和误差,也不用自己调整数据结构,不用转化为matrix,很方便。
4. 多系列图
x<-seq(from = 1,to = 9,by =2)
y<-seq(from = 2,to = 10,by= 2)
barplot(rbind(x,y),beside=T,col=heat.colors(2))
5. 应该注意避免使用的变量名
R语言中预定义了大量函数,有些函数名相当简单,比如c()函数,根据本人的实践经验,应该避免使用过于简单的变量名,以免与R语言已有名称冲突,而出现意想不到的错误。自己取变量名字是,最好能加上自己的一些特征,比如公司缩写,比如本人公司首字母缩写为MS,则本人使用的变量名都以MS开头,然后接下划线,比如MS_Alarm,MS_Books等等。
以下是尽量应该避免使用的变量名:
单个字符:a,b,c,d,…,x,y,z,A,B,…,X,Y,Z,
已经被R语言使用的名字:data,names,dim,seq,…
另外,命名新变量时,应该先检查一下变量名是否已经存在。
可以使用get()函数查询变量名,看是否有返回值。
6. Windows环境下,R语言调用C语言库
1.安装Rtools,http://www.murdoch-sutherland.com/Rtools/Rtools.exe这个在写R包时要用,当然这里不会提到。
2.配置环境变量,“我的电脑”–>“属性”–>“高级”–>“环境变量”–>“系统变量”–>PATH,在后面添加:D:\Rtools\bin; D:\Rtools\perl\bin;D:\Rtools\MinGW\bin;D:\R-2.8.1\bin(前三个取决于Rtools的安装位置,最后一个取决于R安装的位置)
3.编写C代码(命名为fac3.c),下面程序得到i*j*k(1<=i,j, k<=n)的和,注意:参数必须用指针表示(对应R中的向量),且编写的C函数不能有显式返回值,即函数返回要声明为void;(参见http://www.wentrue.net/blog/?p=72,该文是在linux下的。)
voidfac3(double *n, double *m){
*m=0;
int i,j,k;
for(i=1;i<=*n;i++){
for(j=1;j<=*n;j++){
for(k=1;k<=*n;k++){
*m=*m+i*j*k;
}
}
}
}
4.编译C,在DOS中(fac3.c所在的文件夹下)输入RCMD SHLIB fac3.c
即可得到.dll文件
5.R中调用,并与R做循环的速度进行比较
dyn.load("fac3.dll")
system.time(out<-.C("fac3",a=1000,b=1))#第一个参数对应C中的函数名
我的老机上运行时间:
user system elapsed
6.67 0.00 6.81
再看看R中的速度
n= 100
m= 0
system.time(for (iin1:n) {
for (jin1:n) {
for (kin1:n) {
m = m + i * j * k
}
}
})
user system elapsed
7.34 0.00 7.44
通过比较可以发现,调用的C做了1000^3次循环比R中做了100^3循环的速度还快!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25评估模型预测为正时的准确性 在机器学习与数据科学领域,模型预测的准确性是衡量其性能优劣的核心指标。尤其是当模型预测结 ...
2025-06-25CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24Power Query 中实现移动加权平均的详细指南 在数据分析和处理中,移动加权平均是一种非常有用的计算方法,它能够根据不同数据 ...
2025-06-24数据驱动营销革命:解析数据分析在网络营销中的核心作用 在数字经济蓬勃发展的当下,网络营销已成为企业触达消费者 ...
2025-06-23随机森林模型与 OPLS-DA 的优缺点深度剖析 在数据分析与机器学习领域,随机森林模型与 OPLS-DA(正交偏最小二乘法判 ...
2025-06-23CDA 一级:开启数据分析师职业大门的钥匙 在数字化浪潮席卷全球的今天,数据已成为企业发展和决策的核心驱动力,数据分析师 ...
2025-06-23透视表内计算两个字段乘积的实用指南 在数据处理与分析的过程中,透视表凭借其强大的数据汇总和整理能力,成为了众多数据工 ...
2025-06-20CDA 一级考试备考时长全解析,助你高效备考 CDA(Certified Data Analyst)一级认证考试,作为数据分析师领域的重要资格认证, ...
2025-06-20