大数据云计算正在改变数据库技术
将数据存储在云中绝不是在云计算刚刚兴起时就广受企业欢迎的。这一概念的安全性和兼容性问题已经远远超过了其数据存储分享功能,而且,将数据从企业内部部署的设施迁移到云并不是一件很容易的事。但对于某些数据密集型应用程序而言,租用云架构似乎越来越多的成为企业选择的方案。
云数据库可能很难同与之相关的应用程序隔离,这反过来又常常使其被淹没在了大量分布式系统中。但根据市场研究公司MarketsAndMarkets的估计,今年云数据库和DBaaS市场将达到10.7亿美元,到2019年将增长至140.5亿美元。
分析公司IDC称,75%到80%的新的云应用程序将属于“大数据密集型的。“考虑到电子商务交易产生了如此众多的新数据,以及其他Web应用程序涉及的大量数据,这一现实也就不难接受了。而这其中,移动应用的增长是最为突出的。
使用案例
根据SearchDataManagement最近的调研报告就体现了新的云架构中的数据管理方法:其冒险的远离了熟悉的企业应用程序范围,并在许多情况下,利用了新兴的NoSQL和NewSQL数据库类型。比如:
●一个在线库存管理操作采用NewSQL数据库处理不同的且不断变化的客户要求。
●应用程序性能监控服务在亚马逊网络服务云使用NoSQL软件,从超过八亿台移动设备上采集实时操作数据。
●一家营销数据服务公司发现其需要内存中的NoSQL技术管理每月一兆的涉及在线广告的交易数据。
●另一家市场分析公司采用NoSQL数据库服务增加了一个SQL启用数据仓库,以便能够在云中查询Web帮助和社交媒体数据。
阻碍数据在云中管理的最大的因素之一是物理学。“围绕大数据和云计算的挑战是你企业需要迁移多少数据,以及从何处迁移。”IBM的高级副总裁和软件集团执行官史提夫·米尔斯在2013年的一个供应商需求信息新闻发布会上表示。
尽管曾经数据在云平台中管理和使用有着重重的限制,但现在其已经扩大到几乎能够兼容任何类型的应用程序工作了,根据米尔斯介绍。关于“垂直模型的获得”仍然是一个问题,他说,但他暗示,相关的建模的工作正在进行中。
同时,随着越来越多的数据在云形成,使得将这些数据就存储在云中而不是迁移的企业内部终端系统变得更容易。
云的前景报告
虽然有时人们似乎认为大数据云计算是初创型网络企业的唯一选择,但这一趋势对于传统企业而言,也是如此。企业大规模转移到云的时机仍不明朗,但这一举措正在进行中。例如,我们就已经从一家金融服务巨头富达投资的技术主管那听到这样的论断。
史蒂芬·拜尔,富达投资公司架构副总裁表示,其所在的公司将以合理的速度迁移,而云和大数据融合的最终将是非常强大的。他作为与会代表去年十一月在Xconomy公司在波士顿举行的数据管理的未来论坛上发言说。
“云计算只是为数据爆炸创造了机会。”拜尔说。他同时指出,还有许多工作要做。他说,现在的重点是在私有云和混合、公共和私有云的变种方面,但他认为,企业不愿在公共云上部署数据密集型应用程序的趋势将衰退。
“公共云显然会在我们未来的生活中扮演相当重要的一个角色。”他说。“企业关键任务的应用程序将继续在企业内部运行相当长一段时间,但我不认为其会存在5年或10年这样长的时间。”
大量将数据迁移到云中的工作都需要重新思考这些数据架构成长的基本前提。在拜尔看来,企业“过于沉迷于关系数据库。”云数据库服务将开始充分发挥其潜力,是时候需要进行改变了。
尽管典型的初创型网络企业可能存在一定程度的狂热,对于一般传统企业将数据向云计算迁移的前进步伐将继续。而云数据库和服务提供商们也将推出某些功能满足传统企业的某些特殊要求。云计算的原始初衷是基于大规模可重复的生产,而这一初衷也将不得不改变。
最终,在房地产市场的回落,企业是否建立,购买或租用数据库的思考将充分建立在对于功能需求和价格计算的综合考虑方面,然后估计其能够给企业带来的潜在价值,进而决定最适合企业的数据管理方式。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21