大数据公司如何从大数据中获取价值
大数据公司该如何从大数据中获取价值
在人们意料之中,大数据产业在今天上升到了很高的地位!
8月6日,工信部的消息显示,大数据产业十三五规划编制工作已正式启动,日前已在工信部信息化和软件服务业司组织下,召开了规划编制第一次工作会议,成立了规划编制小组,讨论了规划编制工作方案、规划草案、任务分工、近期工作安排等。
大数据产业的未来,越来越值得人们期待。但如何从大数据上获取价值,却是一个很让人头疼的问题。
就在前几天,笔者读到一段很“不合潮流”的话。在一次演讲中,华为轮值CEO徐直军表示:“华为不是一个数据公司,不经营数据,永远不从数据上获取价值。而是与更多和合作伙伴一起来保护我们客户的数据,使客户数据更安全,解决客户面向未来的问题,使客户真正实现信息化!”
对于他的说法,我是持怀疑态度的,甚至感到他说的很不严谨。如果从文字上细细琢磨的话,对客户数据的保护其实也是一种对大数据的利用,保护大数据带来的价值,也是大数据的变现。大数据时代的安全防护,难道不也是一种产业分支吗?在别人利用客户大数据发广告的时候,你保护了这些大数据,除非你是免费的,否则怎么会没有价值产生?即便是360的免费杀毒,也在别的地方产生价值了。华为的大数据,又怎么能独善其身?
很显然,没有人可以游离于大数据的价值之外。不再搞一些文字方面的纠缠了,其实我举徐直军这段话的目的,无非是想说明这一点:“大数据,不经意间就会产生价值。”于是,再回到一开始那个问题:“大数据公司该如何从大数据上获取价值?”
对于这个问题,一直以来我个人的观点是这样的:“第一,大数据必须要利用,否则就是浪费,同时弃之不用也对我们的发展不利。第二,大数据的利用要遵循三个原则,一是不能以影响用户体验为代价,二是不要采取非法手段去牟利,三是应该确保大数据的利用是在绝对安全的前提之下,或者最大限度的安全之下。第三,大数据要有公众监督,不能暗箱操作,要有透明性。”
我之所以持有这样的观点,是因为这几个问题是目前外界对大数据比较关注但也很容易被忽视的问题。目前,人们纠结于利用或不利用大数据,却忽略了怎么用,怎么好好的用,怎么用好。虽然目前大数据还没有做到真正的商业化,但之前一些关于大数据的“警报”却必须引起我们的重视,比如社保信息泄露,比如某些电商的信息泄露等等。
对于我的问题,以及这几个观点,笔者向大数据解决方案提供商成都数之联科技CEO周涛请教。周涛是这样回答我的。
关于大数据本身,他认为,“大数据”是“数据化”趋势下的必然产物。数据化最核心的理念是:“一切都被记录,一切都被数字化”。
对于这个观点,我是赞同的,因为这就是大数据的本质。“天空没有留下翅膀的痕迹,但我已经飞过”,这只是诗歌,不是现实。
对于如何从大数据上获取价值,周涛认为:“对此,我们要做得是1,解决‘信息过载’的问题,即通过自动化、规模化的方式为每一个用户找到他感兴趣或者需要的信息;2、从非结构化的数据中挖掘出价值,甚至在尽可能少损失有价值信息的前提下将其结构化;3、在数据隐私和安全得以保障的前提下,从关联的数据中挖掘出‘一加一远大于二’的价值。”
周涛的观点,应该是从企业角度来说的。按我理解,应该是这样三个应用步骤:“一,如何提取大数据;二,如何优化大数据;三,如何合理利用大数据。”说的虽然简单,但很清晰。尤其是“一加一远大于二”的说法,很有启发性。
不过,对此我还有几点疑问:“第一,提取大数据的方法有了,但大数据的主人是否愿意让企业提取呢?比如,我购买商品,留下了我的信息、地址甚至电话,这些我是不愿意让别人提取的。第二,大数据优化的过程中,有价值的信息留下了,但那些在商家眼里无价值的信息怎么处理?一旦所谓无价值的信息被遗弃,最终落入别有用心的人手里,那会怎么样呢?”同时,我还有一个宽泛一点的问题,大数据的安全该如何保证呢?
真正的物联网时代还没有到来,但已经近在咫尺,大数据公司该如何从大数据上获取价值,这是个必须要思考的问题。对于我的问题和忧虑,我很希望周涛或者是其他的行业人士能给我一个解答。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 8-1 Pandas 数据重塑 - 数据变形 数据重塑(Reshaping) 数据重塑,顾名思义就是给数据做各种变 ...
2024-11-26统计学基础 - 理解统计学的基本概念和方法是数据分析师必备的技能之一。统计学为他们提供了处理数据、进行推断和建模的基础。 数 ...
2024-11-25数据分析师在如今信息爆炸的时代扮演着至关重要的角色。他们不仅需要具备扎实的数据分析技能,还需要不断学习和适应不断发展的技 ...
2024-11-25数据分析师的工作职责涉及多个关键方面,从数据的获取到处理、分析再到可视化,旨在为企业的决策提供有力支持。让我们深入了解数 ...
2024-11-25数据分析师:洞察力量的引擎 数据分析师的兴起 数据分析师行业目前正处于快速发展阶段,市场需求持续增长,薪资水平也有所提升。 ...
2024-11-25数据收集与整理 - 从各种来源收集数据,清洗和整理以确保数据质量和可用性。 数据分析与建模 - 运用统计学方法和机器学习模型对 ...
2024-11-25数据分析是当今社会中不可或缺的一项技能,涵盖了广泛的工具和技术。其中,掌握各种数据处理函数对于数据分析师至关重要。本文将 ...
2024-11-25“大数据治理”是一个涵盖广泛的复杂概念,其核心在于确保大规模、多样化的数据资源能够被有效管理和利用。不仅涉及数据的采集、 ...
2024-11-25一、引言 背景介绍 随着信息技术的快速发展和互联网的普及,大数据已经成为现代社会的重要资产。大数据的兴起不仅推动了各行各业 ...
2024-11-25《Python数据分析极简入门》 第2节 7 Pandas分组聚合 分组聚合(group by)顾名思义就是分2步: 先分组:根据某列数据的值进行 ...
2024-11-25数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22