伦敦德比大数据:切尔西往绩占优 降盘不降水
面对大数据的考验,传统媒体站在十字路口。一方面,新闻的内容正在发生变化,数据可以拓展新闻报道的内容,挖掘有价值的联系和规律。另一方面,新闻的呈现方式也在发生变化,可视化的程度更高。然而,利用大数据做新闻,记者还面临着一系列值得注意的问题。而我国新闻媒体运用大数据报道新闻方面尚处于初级探索阶段,需要借鉴国际同行的经验。
大数据新闻报道魅力何在?
【背景】今年春运期间,在央视综合频道《晚间新闻》栏目中,一则名为“据说春运”的专题报道引发观众好评如潮。随着HTML5的异军突起,数据新闻的表现形式越发多样化。而从2009年开始,包括英国《卫报》、财新传媒在内的国内外媒体已先后组建了数据新闻团队,可视化新闻已经从“配角”变为“主角”,从“噱头”变为“看头”。
主持人:与传统新闻相比,大数据新闻有何特色?
郭俊义:对大数据的采集和挖掘,为新闻报道开辟了一个全新的领域。从新闻报道的内容来说,传统的新闻报道是需要有记者去实地采访,形成文字稿,或者视频片,然后再经过编辑后期的加工才能出来。但是大数据新闻基本不需要用传统的采访方式,它通过跟拥有大数据源或者大数据挖掘技术的互联网公司合作,就能从中挖掘出新闻。另外从新闻报道的表现方式来看,大数据新闻是通过可视化的方式来呈现,这些可视化手段让以往单调和抽象的数据更易被受众接受。
沈浩:我们身处移动互联网时代,每个人的上网行为,比如购物、社交、看新闻、出行等数据都可以被实时抓取,这些都为大数据新闻提供了丰富的新闻素材。此外,相比于传统新闻报道,大数据新闻更加善于抓住每个个体,比如像今日头条,它能更多地为每个个体进行新闻的“私人定制”,实现点对点的传播,而不再是传统的点对面的新闻传播。
喻国明:传统的新闻报道本身有它自身的价值,它对个体的观察,对现场的描述等都是它的长处,但有限的样本调查报道会影响新闻报道的客观性。比如说一个政策公布之后,一名记者如果用传统的方式,去走访一些他认为比较有代表性的采访者,例如教师、干部、群众、工人、农民等等,把他们的意见采集到一起进行整理,并认为这样就很有代表性了,能够反映各界人士的心声。但其实这样的采访方式由于带有太多的主观因素,得出的结论很容易产生偏差。大数据新闻报道则基于对大量庞杂数据的分析,样本会更加全面,使报道结果能相对客观一些。
数据一定不会说谎吗?
【背景】在当今互联网普及的社会中,几乎每一个人都会和统计数字接触,但有时貌似精确的统计数字在被人利用后,也会成为迷惑他人的工具。美国统计学家达莱尔·哈夫的《统计数字会撒谎》一书被中国网友称作“数据打假手册”,他在书中建议,在看到统计数字后,你应当首先问自己5个问题:“谁说的”“他是如何知道的”“遗漏了什么”“是否有人偷换了概念”“这个资料有意义吗”。
主持人:相比于传统的新闻报道,大数据新闻在样本选择上要庞大得多,这是否意味着大数据新闻报道一定比传统新闻报道更加客观?
郭俊义:与传统新闻一样,大数据新闻报道同样面对新闻的真实性、规范性等新闻伦理的问题。甚至在一些大数据新闻报道中,也需要用传统的新闻报道介入以核实信息的准确性。比如我们在《据说春运》的制作过程中,有一期百度大数据显示,从成都流向北京的人流量非常大,但按常理说,过年人流都是从大城市流向中小城市的,于是我们立即请成都站的记者去实地进行采访和拍摄,结果发现车上很多都是老年人,原来他们是从成都出发去北京的孩子身边过年。
喻国明:并不是所有的数据新闻都是准确客观的。数据新闻在制作的过程中会有指标选择、样本采集、分析方法、表述方式等一系列步骤,在此过程中都会面临一些主观因素的干扰。
沈浩:在大数据研究中有一个词叫作“脏数据”。比如在社交网络上存在大量的“水军”,通过“注水”发帖来扰乱网民的真实想法。那我们在研究中如果使用了因此而得来的数据,就会造成数据分析结果的偏差。
能否成为常规报道方式?
【背景】9月5日,国务院印发《促进大数据发展行动纲要》,其中指出,到2018年底前,建成国家政府数据统一开放平台,率先在信用、交通、医疗、卫生、就业、社保、地理、文化等重要领域实现公共数据资源合理适度向社会开放。2020年底前,逐步实现信用、交通、医疗等民生保障服务相关领域的政府数据集向社会开放。
喻国明:大数据新闻报道目前还处于起步阶段,面临很多挑战。第一是大数据的来源是受限制的,一些政府的统计数据,尤其是涉及民生的,目前很多都没有开放给公众。第二是数据来源的单一性,大数据不仅仅是数据的规模大、量大,大数据信息还涉及品类的多样性,比如你要研究人的社会活动,那你不仅仅是要看他的交往数据,而且最好还能看到他的购买数据等等。可以说,全世界到目前为止,针对大数据新闻报道,并没有找到一个完整、统一的规范和彻底的解决方案。
郭俊义:大数据新闻在未来会有越来越多的用武之地,特别是在很多跟民生密切相关的领域。比如上海外滩踩踏事故中的调查报告提到,当天执勤的民警曾经用肉眼看到过人流量过于密集,后来我在想,如果我们当时能有一个人流量的数据流动图,或许以后再遇到此类状况就能避免悲剧的发生。事后我找到腾讯公司,跟他们要到了当天在外滩的人流量数据图,并且对比事故发生的前一天和后一天,做了一个GIF人流量变化的动图,对比非常明显。如果以后的媒体能更多地跟大数据公司合作,会更好地彰显新闻的服务功能。
沈浩:新学期开学我们迎来了中国传媒大学第一届数据新闻专业的学生,这些新生在未来4年除了要学习传统的新闻知识,还要学习统计、编程、数据可视化制作等针对数据新闻的专业知识。其实放眼全球,必备的统计、编程、制图技能已经成为优秀记者的“标配”,这是一个未来的发展趋势。其实我们两年前就已经在校内开设了针对大二学生的数据新闻的实验班,虽然他们明年才正式毕业,但已经被很多媒体提前预订,这证明这类人才非常有市场。
数据分析咨询请扫描二维码
在现代信息技术的广阔世界中,大数据架构师扮演着至关重要的角色。他们不仅引领着企业的数据战略,还通过技术创新推动业务的不断 ...
2024-11-04在当今数字化时代,数据分析师已成为企业关键角色,帮助决策者通过数据驱动的洞察实现业务目标。成为一名成功的数据分析师,需要 ...
2024-11-03在当今数字化的世界中,数据分析已经成为推动商业决策的关键因素。随着公司和组织越来越依赖数据来驱动业务战略,对数据分析专 ...
2024-11-03《Python数据分析极简入门》 第2节 2 Pandas数据类型 Pandas 有两种自己独有的基本数据结构。需要注意的是,它固然有着两种数据 ...
2024-11-01《Python数据分析极简入门》 第2节 1 Pandas简介 说好开始学Python,怎么到了Pandas? 前面说过,既然定义为极简入门,我们只抓 ...
2024-10-31在当今数据驱动的世界中,数据科学与工程专业的重要性愈发凸显。无论是推动技术进步,还是在商业决策中提供精准分析,这一专业都 ...
2024-10-30在当今信息爆炸的时代,数据已成为企业决策和战略制定的核心资源。爬虫工程师因此成为数据获取和挖掘的关键角色。本文将详细介绍 ...
2024-10-30在当今数据驱动的世界中,数据分析是揭示商业洞察和推动决策的核心力量。选择合适的数据分析工具对于数据专业人士而言至关重要。 ...
2024-10-30能源企业在全球经济和环境保护双重压力下,正面临前所未有的挑战与机遇。数字化转型作为应对这些挑战的关键手段,正在深刻变革传 ...
2024-10-30近年来,随着数据科学的逐步发展,Python语言的使用率也越来越高,不仅可以做数据处理,网页开发,更是数据科学、机器学习、深度 ...
2024-10-30大数据分析师证书 针对不同知识,掌握程度的要求分为【领会】、【熟知】、【应用】三个级别,考生应按照不同知识要求进行学习。 ...
2024-10-30《Python数据分析极简入门》 附:Anaconda安装教程 注:分Windows系统下安装和MacOS系统安装 1. Windows系统下安装 第一步清华大 ...
2024-10-29拥抱数据分析的世界 - 成为一名数据分析工程师是一个充满挑战和机遇的职业选择。要成功地进入这个领域,你需要掌握一系列关键技 ...
2024-10-28降本增效:管理战略的关键 企业管理中的降本增效不仅是一项重要的战略举措,更是激发竞争力、提高盈利能力的关键。这一理念在当 ...
2024-10-28企业数字化是指利用数字技术和信息化手段,对企业的各个方面进行改造和优化,以提升生产效率、服务质量和市场竞争力的过程。实现 ...
2024-10-28数据科学专业毕业后,毕业生可以选择从事多种不同的岗位和领域。数据科学是一个快速发展且广泛应用的领域,毕业生在企业、学术界 ...
2024-10-28学习数据科学与大数据技术是当今职业发展中至关重要的一环。从基础到高级,以下是一些建议的课程路径: 基础课程: Python编程 ...
2024-10-28在信息技术和数据科学领域,数据架构师扮演着至关重要的角色。他们负责设计和管理企业中复杂的数据基础设施,以支持数据驱动的决 ...
2024-10-28进入21世纪以来,随着信息技术的迅猛发展,大数据已经成为全球最具影响力的技术之一,并成为企业数字化转型的核心驱动力。大数据 ...
2024-10-28随着科技的迅猛发展,数字化转型已成为现代企业保持竞争力和推动增长的关键战略之一。数字化不仅仅是技术的应用,它代表着一种全 ...
2024-10-28