制造业寒冬 企业转型热追大数据
实际上,从产品生产、企业运营、物流运输再到精准营销,大数据似乎可以从各个方面参与,并且改变制造业的发展现状。而在风险与机遇并存的转型过程中,制造业企业必将遭遇众多的技术困难与理念障碍。
如何顺利地完成这场新时代的工业革命?制造业+大数据,一切才刚刚开始。
9月17日,一场关于工业4.0与中国制造2025的研讨会,在北京朝阳区举行。会场坐满包括川渝皖鄂等全国各地来取经的企业。
河北一家钢铁企业的负责人花了3900元,买到了一个倒数第二排的座位。他告诉21世纪经济报道记者,过来参会的目的是“企业必须要转型,但不知道怎么转,过来学习”。
被许多人视作工业4.0三大基础技术之一的工业大数据,在此次会议上被频繁地提及。而在现场的企业看来,这些探讨,多在理论阶段。风口上的大数据,与寒冬里的制造业,如何组合才能挽回颓势?
实际上,从产品生产、企业运营、物流运输再到精准营销,大数据似乎可以从各个方面参与。并且改变制造业的发展现状。而在风险与机遇并存的转型过程中,制造业企业必将遭遇众多的技术困难与理念障碍。
如何顺利地完成这场新时代的工业革命?制造业+大数据,一切才刚刚开始。
风口与凛冬,制造业热“追”大数据
今年夏天,一位进京招商的南方某县县委书记,在中关村(000931,股吧)某科技园看了两天智能制造项目后,用“震撼”两个字,来感慨互联网和大数据给传统制造业带来的变化。
他此行的目的,是引进一家基于大数据的智能制造企业,来改造他所在县的传统纺织业。
在他看来,一方面经济下行,传统制造业遭遇寒冬,县域传统制造业开工率降低,同时,人口红利消减,制造业生产成本增加,企业生产比较困难。他认为,当下地方发展智能制造企业的需求十分迫切,也是地方经济转型的重要风向标。
传统制造业如何转型,目前关于企业转型的周末培训班,报名费飙到了两三万。各地行业交流会上,也都传播着“传统企业急需转型,不转型如等死”的信息。
大数据、云计算、工业物联网,种种新名词让很多企业以及地方招商官员眼花缭乱。大数据被当作制造业连接互联网的命脉,互联网大佬们称,大数据是区别传统制造业和智能制造的关键。大数据给制造业带来的价值,似乎正在逐渐被认可。
事实上,不只是国内,德国作为工业4.0发展的先行者和探路者,其业界对大数据的重视程度也相当之高。在9月17日的关于工业4.0的会议上,一位来自德国的专家,将数据与数据质量列为德国实现工业4.0的四大驱动力之一,与工业传统、劳动力和材料、能源成本并列。
不仅仅是业界和地方政府,在决策层面,推进大数据与制造业结合的步伐也在加快。
9月10日上午,工信部召开发布会解读《促进大数据发展纲要》,其中提到工业大数据工程。21世纪经济报道记者在会场获悉,工信部重点提到,将推进利用大数据推动信息化和工业化深度融合,研究推动大数据在研发设计、生产制造、经营管理、市场营销、售后服务等产业链各环节的应用,积极推动制造业网络化和智能化。
工信部长苗圩撰文解读我国制造业如何由大变强时称,当前的重点是推动互联网在制造业领域深化应用,积极发展云制造等基于互联网的新型制造模式,培育工业互联网新应用,建设一批工业云服务和工业大数据平台。
制造业+大数据探路,颠覆还是辅助?
一般认为,以大数据、云计算、物联网为基础的新一轮工业革命,有两个根本任务,一是以互联网新思维创造新业态,二是用新的信息技术改造旧行业。21世纪经济报道记者调查发现,在这两个思路下,都有先行者正在探索大数据在制造业的应用。
9月10日下午,工信部组织召开智能制造试点示范经验交流电视电话会议。海尔集团轮值总裁梁海山在交流会上发言。
据梁海山介绍,从2005年开始,张瑞敏提出要把传统制造变成大规模定制。2008年,海尔对企业的产品设计和制造体系进行了模块化改造,同时在虚拟设计、实体制造方面进行了系统的建设。从模块化到自动化,到黑灯工厂,再到现在的智能制造互联工厂,在一次次转型中,海尔官方口径经常用到一个词——“颠覆”。梁海山称,海尔智能制造互联工厂不是一个工厂的概念,而是一个生态系统,整个企业全系统、全流程都要进行颠覆。
海尔一位负责人告诉21世纪经济报道记者,试图脱离传统家电制造企业范畴的海尔,现在的定位是“一家开放的平台型企业”。而过去三年,围绕如何使大数据及时形成价值,海尔已经基本形成了一整套转型布局。
在数据源和数据搜集方面,海尔从2012年开始搭建了SCRM数据平台(社交化客户关系管理系统),到目前海尔共积累的线下实名数据达到1.2亿,线上的匿名数据有7.8亿。同时,海尔强调“回款不是市场销售的结束,而是用户交互的开始,企业应从追求产品销量转变成追求用户流量”。
海尔数据发展战略总监孙鲲鹏介绍,海尔要求产品成交后,必须采集用户数据。并且不再单纯采集送货信息,而是记录用户姓名、详细住址等等全方位的数据,用以在数据库生成完整的用户画像,预测用户需求。
在数据分析上,海尔曾经采用先搜集再分析的传统路子。现在则倒了过来,将数据视作变量。先实现生态圈和用户交互,再通过对数据流的即时处理,完成对数据的动态价值实现。
对于大数据的功用,孙鲲鹏总结了四个方面,一是大数据为海尔提供交互创新数据支撑,二是帮助企业做好精准营销,三是为企业提供决策支持,四是数据本身也可以成为商品。
以交互创新为例,海尔通过SCRM积累了1亿以上的用户数据。以亿为单位的样本,在做用户分析开发新产品方面,效果显著。比如其开发的某款新功能的洗衣机,即通过大数据平台,获悉大量用户数据吐槽和建议,然后再通过相应的平台跟121万用户进行交互沟通,搜集了1322条关于新款洗衣机的建议数据,然后再拿出相应的方案。
在精准营销方面,海尔目前已经将传统意义的广而告之、大面积投放广告,改成基于数据的精准交互营销,通过对用户数据的积累,了解用户是谁,用户在哪里,用户要什么,然后做精准营销。据介绍,今年1到7月份,海尔通过对用户的数据挖掘和预测需求进行交互带来的精准营销,转化的销售额超过40亿元。
如果说海尔选择了转型成为“颠覆性”的新企业,一些传统的技术和服务提供商,则似乎更偏向于为制造业企业提供大数据服务与技术,帮助企业完成业务升级。
以GE通用电气推出的 Predix 工业大数据平台为例,通用电气工业互联网大中华区总经理杨涛介绍,基于Predix平台的APM(资产性能管理)系统,可以智能化完成对生产设备资产生命周期管理、监视与诊断、基于状态的维护和实时运营智能等多方面任务,达到控制点检人数、提高设备性能、发现设备隐患等效果。
据悉,目前这些技术在航空业应用最为成熟,国内或已有多家航空公司与GE达成了合作。
此外,德国中小企业联合会德国-中国常驻代表吴婷在8月的一次大数据会议上透露,在德国,纯粹的工业大数据企业也还没有出现,制造业+大数据的应用还是以提供企业解决方案为主要形式。目前,在德国的制造业领域,已经出现了一批通过大数据手段,实现对生产线流程优化升级的外包服务。
硬件天堑,大数据效益短期变现难
在金融、交通等领域,大数据作为资产管理变现的理念,已经越来越受到认可。但在制造业生产过程中,对于大数据应用的价值实现,还有不少企业反馈无从下手。
中国运载火箭技术研究院研究发展中心高级工程师张京男告诉21世纪经济报道记者,传统工业基础设备面临升级改造,在工业4.0的大趋势下,生产流程中的很多数据采集手段需要进行升级改造。基础数据统计的问题不解决,制造业+大数据就无从下手。他认为,短期看还没有特别好的应用形式出现,当下主要还是要着重改进数据采集手段。
对于生产线上的大数据把握,张京男认为,只有在生产线上实现了智能化,完成信息采集手段的提升,才能统计到大量的生产实时数据;只有数据丰富了,才有挖掘、分析和应用的可能,才能真正了解整个生产系统运行的情况,全面开展智能化生产和个性化生产。
然而,不同于其他行业,工业和制造业对大数据的要求更为严格。不仅对数据“清洁度”要求更高,其分析手段也不再仅以统计分析为主,而对包括数学、机械、人工智能在内的专业分析流程和技术体系提出了更高要求。这也是阻挠制造业+大数据实现其价值的重要技术难题。
清华大学数据科学研究院副院长韩亦舜认为,制造业+大数据,实际上是制造业的一次内部优化升级的过程,带来的是效率提升、智能化和个性化生产等改变。大数据效益最终不是体现在直接的经济收益,而在于帮助企业提升竞争力,能够更清楚地应对客户需求,提供优质服务,“只要我们的制造业水平能随之得以提高,制造业+大数据的做法就应该坚持下去。”
而在另一些专家看来,未来十到二十年,是从工业3.0到工业4.0的过渡时期,也有专家称,现在3.0还没有做好,4.0还比较遥远。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21