谢文:互联网金融还是大数据金融
近来,颇有几个新名词在市面上流行,诸如“互联网金融”,“信息消费”之类。这些新名词并非产自概念日日翻新的互联网业,却来自传统金融业甚至政界,其气势之大,梦想之美,内涵之广,投入之多,逻辑之混乱,可行性之差,似乎值得一辨。
就概念而言,从众说纷纭中大致可以概括出互联网金融的几层含义:
一是传统金融服务的网络化,例如网络银行,网络券商,网络保险,等等。这些都是古已有之的东西,只不过在中国实现较晚,动作较慢而已。事实上,互联网在美国最早最成熟的商业模式就是这一套,二十多年前就已出现并蓬勃发展至今。不过,无论在金融服务业还是在网络业,都没有什么公司因此脱颖而出,其原因无非是家家都做,没什么创新,最好的结果是获得摊薄的平均利润。为此今天再创一个新概念毫无必要。
二是传统金融服务的扩展化,例如小额支付,小微企业信用调查,小额贷款,灵活机动的市场营销,等等。这些事情在互联网出现之前,做起来费时费力,成本太高而收益太少,如今利用互联网就可以顺利实现。做这些事情也许可以创些收,但很难提高利润率,因为是个琐碎活。为此带上个互联网金融的大帽子有点言过其实。
三是全新的网络金融服务和产品,例如众筹投资和比特币。这些东西新则新矣,但属于小众市场和缝隙市场,不值得大动干戈,更不值得为此创立什么新概念。
四是全面的网络金融服务,或曰金融电商,例如金融商城和各类产品和服务的综合大卖场。这种模式以金融服务为基础,以阿里为样板,再掺杂以WEB2.0,云计算,移动互联网和大数据等时髦互联网概念,几乎是一个通吃的全面互联网服务平台,仅仅称之为互联网金融显得有点包容不住,过于狭窄了。
无论是单独拿出来看,还是把这四层意思合起来看,互联网金融这个概念从互联网业的角度看毫无新意可言。如果只从传统金融业的角度考量,互联网金融的概念也不是完全不能成立,但只有把它与非互联网金融服务或传统金融服务对立比较才有意义,但这好像也不是鼓吹这一概念者的本意。
过去若干年来,互联网业在不断创新中,蚕食着许多传统产业的世袭领地,同时创造出不少财富传奇。面对这一发展,传统金融业者一则以喜,二则以忧。喜的是互联网开拓出广阔的新边疆,金融服务有了更多更有力的方式向用户提供更多更好的产品和服务;忧的是金融服务有了新人,弄不好会砸了传统业者的饭碗。于是,在贪婪与恐惧的双重动力作用下,以攻为守的思路油然而生。既然一无所有的网络业者都可以尝试网络金融服务并大有斩获,那么传统金融业者有经验,有资本,有垄断,有用户,为什么不能后来居上呢?一个明显的区别在于,网络业者早在十数年前就开始了尝试,那时网络金融服务是被斥责,被打压,被怀疑的对象,历尽千辛在服务模式,商业模式和技术壁垒方面有所心得,垒起了一定的竞争门槛。而今天再做所谓互联网金融这种早已成为社会共识的东西,如果在差不多的时间内出现十个八个互联网金融服务平台,自相残杀还来不及,那还有气力与遥遥领先的网络业者竞争?别人贪婪我恐惧,别人恐惧我贪婪,巴菲特的警句值得谨记。如果别人贪婪我亦贪婪,相互抵消,结果为零。
如今世界正在步入大数据时代,为后来者提供了不可多得的战略空间和机会。当世界的万事万物都在化为数据存在,当各种产品和服务都已网络化和数据化,当五花八门的数据终端普及进入千家万户,是否以自己为中心提供各种网络服务已经变得没有过去那么重要,而获取和利用他人服务所产生的数据变得更加重要。基于某种服务所积累的数据价值在贬值,数量再多也算不上大数据,只有获取网络世界中全面的数据才有深度整合利用的价值。正因如此,传统金融服务商就大可不必邯郸学步,重复互联网运营商走过的道路,非要先建立各种非本业服务以获取本业之外的数据。
传统金融业者可以利用自身优势探索一条新路。与其他传统产业相比,金融服务业是电子化,网络化和数据化程度最高的产业之一,也许仅次于网络业和电信业。由长期系统的金融服务积累的数据完全可以在确保用户隐私和商业机密的前提下,与各行各业通过数据间的共享,交换和买卖以生成大数据,在此之上探索全新的产品和服务。当然,这样的战略就很难称之为互联网金融了,互联网金融这种概念从提出之日起就至少落后于产业发展前沿五年以上。使用大数据金融的概念,制定并实施大数据金融战略,更能体现金融业自身的实力和潜力,也更能与网络业及其他行业有机融合,平等竞争,在大数据时代找到自身生存发展的机会也更大。
数据分析咨询请扫描二维码
需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20