数据科学家被《财富》杂志誉为21世纪最性感的职业,但遗憾的是大多数企业里都没有真正的数据科学家人才。根据麦肯锡报告,仅仅在美国市场,2018年大数据人才和高级分析专家的人才缺口将高达19万。此外美国企业还需要150万位能够提出正确问题、运用大数据分析结果的大数据相关管理人才。
那么,对于不同职业经历和专业背景的IT人士来说,如何才能尽快转型,加入数据科学家的钻石王老五的行列呢?
Ofer Mendelevitch近日在Hortonworks官方博客发表文章给出了自己的观点。
Mendelevitch认为无论是Java程序员还是业务分析师都有机会成为数据科学家,以下是他对不同人群给出的具体建议:
作为Java开发者,你对软件工程的规则已经了然于心,能够设计软件系统执行复杂任务。数据科学正是关于开发“数据产品”的一门科学,主要是基于数据和算法的软件系统。
对于Java程序员来说,第一步需要了解机器学习的各种算法:现在有哪些算法,都能解决哪些问题以及如何实现。另外还需要学习使用R和Matlab等建模工具,此外WEKA、Vowpal Wabbit和OpenNLP等库也为大多数常见算法提供了经过验证的实现方法。如果你还不太熟悉Hadoop,学习map-reduce、Pig、Hive和Mahout将很有帮助。
如果你是Python程序员,对软件开发和脚本编写一定很熟悉,也许已经在使用很多数据科学中常见的库例如NumPy和SciPy。
Python对数据科学应用的支持很好,尤其是NumPy/Scipy, Pandas, Scikit-learn, IPython 等用于探索性分析的库,以及可视化方面的Matplotlib。
在处理大型数据集方面,多学些Hadoop及其与Python的流式集成。
如果你有统计学或者机器学习的背景,那么你很可能很多年前就开始使用诸如R, Matlab 或 SAS进行回归分析、聚类分析等机器学习相关任务。
R、Matlab和SAS是很强大的统计分析和可视化工具,对于很多机器学习算法都有很成熟的实现方法。
但是,这些工具通常被用于做数据勘探和模型开发,很少单独用来开发产品级的数据产品。在开发端到端的数据产品时,大多数情况下,你需要需要同时用到其他软件模块如Java、Python等,并与Hadoop等数据平台整合。
显然,熟悉一门或者多门现代编程语言,例如Python或Java是你的首要任务。此外,与有经验的数据工程师紧密合作将有助于更好地理解他们开发生产级数据产品所用到的工具和方法。
如果你的背景是SQL,那么说明你已经跟数据打交道很多年了,你很清楚如何通过数据获取业务分析结果。Hive能让你以你熟悉的SQL语言访问Hadoop上的大数据集,因此是你步入大数据殿堂的首选。
数据产品通常需要使用SQL无法胜任的高级机器学习和统计,因此对于业务分析师来说,进入数据科学领域的第二个重要步骤就是在理论层面深入了解此类算法(例如推荐引擎、决策树、NLP),并熟悉目前的实现工具如Mahout, WEKA,或Python的 Scikit-learn。
作为Hadoop开发者,你一定已经了解了大数据集和集群计算的复杂性。你还可能熟悉Pig、Hive、HBase并有丰富的Java经验。
第一步,你需要深入了解机器学习和统计,以及这些算法面向大数据集的高效实现方法。Mahout是个不错的开始,可以在Hadoop上实现上述很多算法。
另外一个需要关注的领域是数据清理(data cleanup),很多算法在建模前都会为数据分配基本结构。但不幸的是,现实中数据大多很“脏”,清理这些数据是数据科学中一项很繁重的工作。Hadoop通常是建模前大规模数据清理和预处理的工具选择。
总结
通向数据科学殿堂之路不可能一帆风顺,你必须学习很多新规则、编程语言,更重要的是还要积累实战经验。这些都需要时间、精力和投入,但最终你会发现一切都物超所值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31