如何使用大数据帮助抓捕罪犯
最近波士顿马拉松赛恐怖袭击的余波尚在,我偶然看到了FCW的一篇有趣的文章,它对政府机构中部署的最新技术和IT技术趋势进行了深入分析。在之前的博客文章中,我曾多次提到“大数据”的使用比以往更加普及了。大数据可以简单地定义成一种从大量的数据中集中整理出所需信息,并将其用于战略和战术行动的手段。实际上,看到大数据被用于帮助抓捕罪犯并不稀奇,原因很简单,在当今这个反恐时代,“防火墙之后”的事件几乎与实际犯罪现场发生的事件同样重要。
从根本上说,大家所看到的FBI调查只是大数据和数据分析实践的冰山一角,这只不过是万里长征的第一步。以下是这篇文章的几条要点。
在4月15日的波士顿马拉松赛中,两场爆炸造成了3人死亡和数十人受伤,这之后不到24小时FBI就编译了10TB的数据,希望通过大海捞针的方式找出嫌疑人的蛛丝马迹。
FBI主导的这一调查对海量的手机基站日志、短信、社交媒体数据、照片和视频监控录像进行了分析,希望快速找出嫌疑人。
调查使用了面部识别软件将照片和视频上的面孔与护照、签证、驾照和其它数据上的照片进行对比。
调查人员收集的10TB数据不过是沧海一粟(联邦政府通常处理的是PB级的数据),调查工作实际上进行了大量的数据削减,主要原因是数据量过大,数据介质类型庞杂,要处理的数据的整体复杂度过高,以及分析数据能够利用的时间很有限。
处理TB级数据或更多的视频、数字图像、文字信息和手机记录就已经十分复杂了。不难想象,如果再把社交媒体加入进来这会是一个多么漫无边际、深不见底的泥潭。我发现这篇文章中最有意思的一点是,调查公司借助一家名为Topsy的公司的服务对数十亿条tweet进行了筛选。Topsy保存有2010年7月以来的所有tweet,在恐怖分子调查中,这使调查人员能够对与波士顿相关的tweet进行大数据分析,而不必去分析上千亿条过去和现在的消息。Topsy的数据库分析软件使调查人员能够用关键词“bomb”(炸弹)搜索特定区域(包括波士顿以及邻近郊区)Twitter上的所有评述。
最终,这种细致搜索从两个嫌疑人的Twitter账户上检查出了包含“bomb”的内容。这种对公共记录的搜索很可能发现其它一些事实上不利于调查的线索,包括有些用户转发了提到炸弹的信息,或者参与了作为嫌疑人定罪证据的聊天等等。此外,Topsy的“地理位置推测”(
Geo-inferencing)技术也使调查人员能够对发出tweet信息的具体地点进行准确映射(考虑到仅有1%的Twitter用户在发tweet时使用了地理位置标签,这项推测技术相当了得)。据Topsy称,这些功能比标准的Twitter位置数据的准确度高20倍。
Emulex能够“掌控”大数据
在Emulex,我们认为解决大数据问题的核心在于企业网络的框架。这里有大量的服务器进行着平行处理来创造价值,这些服务器通过以太网和光纤通道协议相互通讯。因此,网络流量的延时和吞吐速度是快速实现大数据部署的关键问题。Emulex之所以能够解决这些延时问题,并获得全球众多企业的选用,是因为我们提供了能够最大限度地扩大数据集群的I/O解决方案,使大数据解决方案能够实现无缝部署。
不幸的是,在一些变态狂的影响下,我们的世界充满着动荡、恐惧,甚至是屠杀。但是同样让我们难以忘怀的是,我们的社会仍能在需要的时候展现出巨大的仁慈和爱心,正像波士顿的公民在这次恐怖袭击之后所展现出来的。尽管大数据为调查提供了重要帮助,但我们不要忘记最终还是一位公民提供的线索把调查人员引向了两名凶犯。归根结底,没有任何技术——无论其多么先进——能够取代人类的善良和不屈不挠的意志。
数据分析咨询请扫描二维码
数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20统计学专业的就业方向和前景非常广泛且充满机遇。随着大数据、人工智能等技术的快速发展,统计学的重要性进一步凸显,相关人才的 ...
2024-11-20