大数据之路不乏荆棘密布
随着生活越来越丰富,大数据也变得越来越难以处理;同时因为数据体积增大、数据类型繁多,技术人员在分析过程中不得不克服大量的挑战和障碍。本文将讨论为什么数据会变得越来越复杂及难以管理,以及在我们分析、整合及存储这些数据时又会面临哪些挑战及障碍,当然还有大数据又会给未来带来什么样的机遇。
大数据确实很大并且很复杂
大数据究竟有多大
举个简单的例子,去参加一个小朋友的生日派对。在出发时,你会发送一个tweet说明一下,数据随之产生。车在半路上,停车加油,付款时果断产生了数据。在超市购买生日卡片,扫描购物卡、结账同样产生了数据。在生日派对中,拍个照片,录段视频,当你在Facebook、Flickr以及Youtube上发布时同样产生了数据。在派对过程中发送的消息,同样产生了数据。贯穿整个过程,你的手机因不停的发送GPS位置而产生数据,你的车因为不停的追踪燃耗而产生数据。由此可见,我们在日常行为活动中产生了大量的数据。
通过IBM了解到,我们每天大约建立2.5 quintillion(1 000
0003)字节的数据,而在过去两年建立了总数据量的90%,同时数据体积以指数的方式增加。随着公司数据捕获能力的增强、多媒体变得流行、社交媒体会话的增加以及使用互联网做更多的事情,数据的体积也不可思议的速度激增。
大数据究竟有多复杂
大数据是复杂的。之所以复杂因为数据的多样性,其中包括结构化数据和非结构化数据。大数据的复杂还在于交付和使用的速度,比如“实时”。并且,大数据的复杂还在于数据的体积。以前家用存储说的是MB和GB,现在讲的已经是TB了,而企业早已跨入PB单元。
大数据市场
大数据增加了信息管理业务的需求,比如Software AG、Oracle
Corporation、IBM、Microsoft、SAP、EMC和HP已经支付150亿美元给专门从事数据管理和分析的软件公司。在2010年,这个产业自身的价值已经超过1000亿美元,并以每年10%的速度增长着——比整个软件业务快2倍。
发达经济体让大数据密集型技术得到更广泛的使用。世界范围内,有46亿的移动终端在产生数据,有10到20亿人在访问互联网。在1990到2005期间,超过10亿人进入了中产阶级,更多富起来的人同样导致了信息的增长。在1986年,世界电信网络有效的信息交互能力为281
PB,1993年为471 PB,2000年为2.2 EB,2007年为65EB,而在2013年,预计的通信总量为667 EB。
大数据分析
大数据需求在可容忍时间内对大体积数据进行处理特殊的技术,大数据分析实践者通常不喜欢共享储存,更倾向于直接连接存储(Direct Attached Storage,DAS),在并行的内部处理节点中混合使用了高速SSD与高容量SATA磁盘。而当下的共享储存架构SAN及NAS已被扣上缓慢、复杂及昂贵的头衔,该类型架构完全不符合现下大数据技术在性能、商用服务器及低成本上的标准。
实时及近实时的信息交付已成为大数据分析的界定特征,尽可能的避免延时同样成为大数据技术的首要挑战之一。数据更希望被存储在内存中,而不是其他终端FC SAN连接的机械硬盘上。同样在大数据情景下,SAN模式下对分析应用程序的要求上比其它类型存储要高得多。
当然,共享存储在大数据分析情景下也有着自己的优势,但是自2011年以后,已不为绝大多数大数据实践者所采纳。
大数据挑战及障碍
鉴于复杂性,大数据处理面临着一系列挑战:
1. 在类似文本或视频的非结构化数据上,我们要如何去理解及使用。
2. 我们该如何在数据产生时捕获最重要的部分,并实时的将它交付给正确的人。
3. 鉴于当下的数据体积和计算能力,该如何储存、分析及理解这些数据。
4. 缺乏人才
当下讨论最多的问题就是缺乏大数据人才,值得庆幸的是许多教育机构都针对此开设了相应的学术课程。而我们也看到一些更好的现象,企业和高校合作共同对抗这个人才稀缺问题,这也是最有效的人才培养途径。
5. 其它一些固有的挑战,隐私、访问安全以及部署
通过EIU(Economist Intelligence Unit)与Lyris(数字化营销软件提供商)最新的报告“Mind the Digital Marketing Gap”了解到,37%的营销主管发现大数据解析到决策制定的转换上存在着非常大的挑战,而45%认为他们不具备有效的大数据分析能力。
24%的营销人员表示他们一直在使用大数据技术来发现见解并制定市场策略,尽管其中大多数人只是偶尔使用数据做可行性分析及个性化客户通信。
其它一些障碍还包括缺乏资金(43%的受访者)、过于强调数字工具及社交媒体、渠道的增多以及人力资源的匮乏(33%左右的受访者)。
大数据机遇
尽管当下大数据技术的应用上还存在许多的挑战,但是其中存在的机遇却远超过这些挑战。大数据成为创新、竞争及生产力提升的绝对利器,我们可以使用大数据回答以前无法解决的问题。我们可以使用大数据获得真知和知识,确定趋势及提高生产力,取得竞争优势并为世界经济创造更多的价值。
数据分析咨询请扫描二维码
数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20统计学专业的就业方向和前景非常广泛且充满机遇。随着大数据、人工智能等技术的快速发展,统计学的重要性进一步凸显,相关人才的 ...
2024-11-20