大数据之路不乏荆棘密布
随着生活越来越丰富,大数据也变得越来越难以处理;同时因为数据体积增大、数据类型繁多,技术人员在分析过程中不得不克服大量的挑战和障碍。本文将讨论为什么数据会变得越来越复杂及难以管理,以及在我们分析、整合及存储这些数据时又会面临哪些挑战及障碍,当然还有大数据又会给未来带来什么样的机遇。
大数据确实很大并且很复杂
大数据究竟有多大
举个简单的例子,去参加一个小朋友的生日派对。在出发时,你会发送一个tweet说明一下,数据随之产生。车在半路上,停车加油,付款时果断产生了数据。在超市购买生日卡片,扫描购物卡、结账同样产生了数据。在生日派对中,拍个照片,录段视频,当你在Facebook、Flickr以及Youtube上发布时同样产生了数据。在派对过程中发送的消息,同样产生了数据。贯穿整个过程,你的手机因不停的发送GPS位置而产生数据,你的车因为不停的追踪燃耗而产生数据。由此可见,我们在日常行为活动中产生了大量的数据。
通过IBM了解到,我们每天大约建立2.5 quintillion(1 000
0003)字节的数据,而在过去两年建立了总数据量的90%,同时数据体积以指数的方式增加。随着公司数据捕获能力的增强、多媒体变得流行、社交媒体会话的增加以及使用互联网做更多的事情,数据的体积也不可思议的速度激增。
大数据究竟有多复杂
大数据是复杂的。之所以复杂因为数据的多样性,其中包括结构化数据和非结构化数据。大数据的复杂还在于交付和使用的速度,比如“实时”。并且,大数据的复杂还在于数据的体积。以前家用存储说的是MB和GB,现在讲的已经是TB了,而企业早已跨入PB单元。
大数据市场
大数据增加了信息管理业务的需求,比如Software AG、Oracle
Corporation、IBM、Microsoft、SAP、EMC和HP已经支付150亿美元给专门从事数据管理和分析的软件公司。在2010年,这个产业自身的价值已经超过1000亿美元,并以每年10%的速度增长着——比整个软件业务快2倍。
发达经济体让大数据密集型技术得到更广泛的使用。世界范围内,有46亿的移动终端在产生数据,有10到20亿人在访问互联网。在1990到2005期间,超过10亿人进入了中产阶级,更多富起来的人同样导致了信息的增长。在1986年,世界电信网络有效的信息交互能力为281
PB,1993年为471 PB,2000年为2.2 EB,2007年为65EB,而在2013年,预计的通信总量为667 EB。
大数据分析
大数据需求在可容忍时间内对大体积数据进行处理特殊的技术,大数据分析实践者通常不喜欢共享储存,更倾向于直接连接存储(Direct Attached Storage,DAS),在并行的内部处理节点中混合使用了高速SSD与高容量SATA磁盘。而当下的共享储存架构SAN及NAS已被扣上缓慢、复杂及昂贵的头衔,该类型架构完全不符合现下大数据技术在性能、商用服务器及低成本上的标准。
实时及近实时的信息交付已成为大数据分析的界定特征,尽可能的避免延时同样成为大数据技术的首要挑战之一。数据更希望被存储在内存中,而不是其他终端FC SAN连接的机械硬盘上。同样在大数据情景下,SAN模式下对分析应用程序的要求上比其它类型存储要高得多。
当然,共享存储在大数据分析情景下也有着自己的优势,但是自2011年以后,已不为绝大多数大数据实践者所采纳。
大数据挑战及障碍
鉴于复杂性,大数据处理面临着一系列挑战:
1. 在类似文本或视频的非结构化数据上,我们要如何去理解及使用。
2. 我们该如何在数据产生时捕获最重要的部分,并实时的将它交付给正确的人。
3. 鉴于当下的数据体积和计算能力,该如何储存、分析及理解这些数据。
4. 缺乏人才
当下讨论最多的问题就是缺乏大数据人才,值得庆幸的是许多教育机构都针对此开设了相应的学术课程。而我们也看到一些更好的现象,企业和高校合作共同对抗这个人才稀缺问题,这也是最有效的人才培养途径。
5. 其它一些固有的挑战,隐私、访问安全以及部署
通过EIU(Economist Intelligence Unit)与Lyris(数字化营销软件提供商)最新的报告“Mind the Digital Marketing Gap”了解到,37%的营销主管发现大数据解析到决策制定的转换上存在着非常大的挑战,而45%认为他们不具备有效的大数据分析能力。
24%的营销人员表示他们一直在使用大数据技术来发现见解并制定市场策略,尽管其中大多数人只是偶尔使用数据做可行性分析及个性化客户通信。
其它一些障碍还包括缺乏资金(43%的受访者)、过于强调数字工具及社交媒体、渠道的增多以及人力资源的匮乏(33%左右的受访者)。
大数据机遇
尽管当下大数据技术的应用上还存在许多的挑战,但是其中存在的机遇却远超过这些挑战。大数据成为创新、竞争及生产力提升的绝对利器,我们可以使用大数据回答以前无法解决的问题。我们可以使用大数据获得真知和知识,确定趋势及提高生产力,取得竞争优势并为世界经济创造更多的价值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31提到数据分析,你脑海里可能会浮现出一群“数字控”抱着电脑,在海量数据里疯狂敲代码的画面。但事实是,数据分析并没有你想象的 ...
2024-12-31关于数据分析师是否会成为失业高危职业,近年来的讨论层出不穷。在这个快速变化的时代,技术进步让人既兴奋又不安。今天,我们从 ...
2024-12-30